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Z ABSTRACT

We report a low temperature study of very small superconducting tunnel junctions.

The samples were fabricated by using electron-beam lithography and thermal evaporation in

single-jtuction, double-junction and eleven-junction-array configurations. The junctions

had normal resistances between 0.5 and 140 k12 and areas between 0.1 and 0.02 (qim)2.

We me,-asured the current-voltage characteristics of the devices at low temperatures (20 mK

-4 K), using a dilution refrigerator.

In general, the devices had a large single electron charging energy Ec E: e2 /2C of

ordcr 1 K. By varying the ratio of Ec to the Josephson coupling energy Ep, we studied the

crossover between the conventional Josephson regime, in which Ej >> Ec, and the

Coulomb blockade regime, in which charging effects are dominant. For comparable

charging and Josephson energies the I-V curve is resistive at all currents, and exhibits a

novel low-voltage resistance RO at currents less than the critical current Ic. Moreover, Ic is

greatly reduced when 'ompared to conventional Josephson junction results, and scales at

low temperatures with R,- 2. If a magnetic field is applied to the junctions, reducing EJ so

that Ej << Ec, we find a sti iking regime in which aspects of the Coulomb blockade of

tunueling coexist with features typical cf Josephson tunneling.

We develop a number of semiquantitative models which appear to explain the

salicnt new features of our observations. In the high temperature regime, thermal activation

and damping effects are very important, since Ec and EJ are only of order 1 K, and the

expurimental results are fitted by extending well established classical models. At low

teml eratures, however, quantum fluctuations of the phase appear to become much more

important, as thermal fluctuations and quasiparticle damping freeze out. We then turn to

quar turn mechanical methods to analyze our measurements. We use the semiclassical

WKI3 approach, valid in the low EcIEj limit (a1ad extend it to regions nearer the Ec - EJ

limit by a numerical method), to obtain estimates of Ro in reasonably good agreement with
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our measurements. Moreover, by assuming that Ic scales with the binding energy of the

ground state phase wavefunction in the Josephson potential, we account for its

experimental Rx-2 dependence. Finally, we use a charge-space model to provide a

semiquantitative account of the measurements in the high Ec/Ej limit

kt
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CHAPTER ONE

INTRODUCTION

One of the main technical trends in the twentieth century has been towards

miniaturization. Physicists and engineers have sought to decrease the size of their devices

to permit an increase in their complexity and flexibility. As the characteristic size of a

device decreases, new physical phenomena are sometimes discovered which give rise to

new applications, and illuminate fundamental physical questions.

Due to the technical breakthroughs of electron-beam lithography and dilution

refrigeration, it has now become possible to study devices of such small size that their

behavior is affected by the quantum mechanical properties of single electrons. An example

is the measurement of the Aharonov-Bohm effect and of quantum conductance fluctuations

due to the interference of electron wavefurctions, observed in metallic wires and

semiconducting devices [see, for example, Umbach, et al., 1984; Skocpol et aI.,1986; Lee

et al. 1987]. A second example is the observation of discrete electronic states in small

"zero dimensional" GaAs quantum well structures known as "quantum dots" [Reed et al.,

1988]. These systems are mesoscopic: while they are composed of a macroscopic number

of particles, they are small enough so that their behavior is directly associated with

microscopic phenomena.

This work is an experimental study of mesoscopic Josephson junctions. A

Josephson junction is composed of two superconducting electrodes separated by an

insulating barrier, as shown schematically in Fig. 1.1(a). Since the early 1960's, when

the first theoretical predictions and experimental observations were made, this system has

been well studied both theoretically and experimentally [see, for example, TL'akham, 1975,

and Barone and Paterno, 1982]. The Josephson junction, in its usual configurations, is

now well understood, and models have been developed which successfully predict its

behavior. The most important variable which describes the system is the phase difference €

i'
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Figure 1.1: (a) Schematic of a Josephson junction and current biasing scheme. (b) The

Josephson potential: U(O)= -Ej cos " - (hl2e) I.
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between the superconducting wavefunctions describing the two junction electrodes. The

two electrodes are coupled, with characteristic energy Ej, as the two wavefunctions overlap

near the barrier, resulting in the Josephson effect. Ej=(h/8e2XAIRn), at low temperatures,

for an ideal junction, where A is the superconducting energy gap, and Rn is the normal

resistance. * is a macroscopic variable, describing the behavior of a large system, since the

phase of each wavefui,,tion is associated with the whole macroscopic superconducting

electrode. 0 has a quantum mechanical conjugate: Q, the Cooper pair charge difference

between the superconducting electrodes. The characteristic energy associated with the

charge is the single electron charging energy Ec, the capacitive energy associated with a

difference of one electron across the junction barrier. Ec= e2 /2C where C is the

capacitance. In conventional Josephson devices, Ej >> Ec, and the junction behavior is

well described by semiclassical models.

The contribution of this thesis to the er.ensive literature on Josephson devices is in

understanding some of the novel physical phenomena encountered when the single electron

charging energy is made comparable to the Josephson energy. Our study is based on low

temperature measurements of the current-voltage (I-V) characteristics of high resistance,

low capacitance Josephson junctions, with Ec of order EJ. If Ec - EJ, the system can no

longer be described by well known macroscopic physics, since a single electron transfer

contributes a very significant energy change. On the other hand, if EJ is still significant,

the macroscopic phase difference 0 plays a role in the system's behavior. The Josephson

junction is then a mesoscopic system.

The dynamics of a Josephson device, i•. its simplest form, may be described by a

hamiltonian H0 , which is a function of the phase difference 0 between the wavefunctions of

the two electrodes, and the charge Q transferred between the electrodes. Ignoring

dissipation, we write

S0
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Q2

Ho(,Q)=E,--Tý -E$ COS#a 2 ost(1)

The effect of a current bias can be incorporated by adding a term equp' to -(fil2e)bp, where I

is the bias curaret. For conventional junctions, the dominant energy in the problem is the

Josephson coupling energy and the most important term in H(OQ) is the one associated

with Ep. The dynamics of the problem at low currents are then simply obtained by the

minimization of energy by r classically well-defined 0 value at a minimum of a well of the

tilted cosinusoidal potential shown in Fig. 1.1 (b). The phase 0 is thus "trapped" in a

potential well until the tilt imposed on the Josephson potential by the current bias is enough

to allow it to escape. This results in the I-V characteristic features shown in Fig. 1.2(a); a

zero resistance branch at low currents, and a very sharp jump to the dissipative voltage state

at a critical current Ic.

In recent years, by fabricating granular films or very small tunnel junctions, it has

been possible to study devices in which the charging energy is dominant over the other

energies of the system (such as kBT or E1). [Giaever and Zeller, 1968; Lambe and

Jaklevic, 1969; Cavicchi and Silsbee, 1985 and 1988; Barner and Ruggiero, 1987; Fulton

and Dolan, 1987; van Bentum et al., 1988.] This has been achieved in samples with both

normal and superconducting electrodes. In normal samples, a typical low temperature I-V

response is shown in Fig. 1.2(b). At low voltages charge is trapped, and the resistance is

very high, until the system acquires enough energy from the biasing source to enable an

electron to tunnel to the other zlectrode. At this point (V-Ae/2C) the dynamic resistance

decreases producing a knee in the I-V curve. This effect is known as the "Coulomb

blockade".

Fulton and Dolan [1987] observed a similar effect in superconducting samples in

which the charging energy is much larger than the Josephson coupling energy. As a result

the knee at V-el2C is superimposed on the superconducting energy gap, as shown



r5

24e -

Vr IC

2C *°

..-. (b)

01

2C ,*• (c)

00

I

Fig. 1.2: Schematics of typical tunnel juncti-.i I-V characteristics;: (a) underdamped

superconductor- insulator-superconductor tunnel junction with Ej >> Ec, kBT. (b) normal-

insulator-normal tunnel junction with Ec >> kBT. (c) superconductor-insulator-

superconductor tunnel junction with E, >> Ej, kBT.
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s,:hematically in Fig 1.2(c). In a broad sense, this effect is conjugate to the Josephson

efect described above. In conventional devices • is a "well defined" semiclassical

v riable, while Q is ill defined. When the charging energy is dominant and the Josephson

c aupling energy is insignificant, quantum fluctuations in 0 are very large and the q.uantum

rmechanical conjugate Q may now be treated classically. The resulting dynamics are very

cdifferent: the zero resistance branch up to !=IW of the Josephson effect I-V curve is replaced

by a very high resistance branch with no critical current.

Our study explores the crossover region between the two extremes described

above. [lansiti et al. 1987a, 1987b, 1988a, and 1988b.] By varying the ratio x=-Ec1/E, we

sweep from a regime in which the Josephson coupling energy is large, well into the regime

in which the charging energy appears to dominate. Experimentally, we have achieved this

in two different ways: First, we have constructed samples of different areas and oxide

barrier thicknesses, which has allowed us to go from Ec/EJ-l/lO0 to Ec/Ey'.lO. Second,

we have further decreased E by applying a magnetic field, which has enabled uF to study

the system with x values in principle approaching infinity, as Ej -4 0.

If the Josephson energy is much larger than e2/2C, we obtain results typical of

conventional Josephson devices. As the Josephson and charging energy become of

t;omparable magnitude, however, we observe two novel regimes. First, we find that as E,

becomes of order Ec, the critical current is greatly reduced and the I-V curve becomes

resistive, even at very low bias currents, as shown in Fig. 1.3. Second, if the Josephson

coupling is reduced further by applying a magnetic field, we observe the new type of I-V

curve shown in Fig. 1.4. The striking feature is the coexistence of a plateau beginning at

Vwe/2C, reminiscent of Coulomb blockade measurements made on samples in which Ec is

completely dominant, with other features common to Josephson tunneling, such as a sharp

jump from the plateau voltage to the superconducting energy gap voltage at a "critical

current" 1c. If the magnetic field is increased further, the electrodes become normal, and

we observe the Coulomb blockade I-V characteristic shown in Fig. 1.5.
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Fig. 1.3: I-V curve of a sample with Rn= 70 and ea itance C A )F, taken
at T=O.98K and H=O, showing definitions of Io Ir, and Ro. Parts (a) and (b) have the

same horizontal scale but different vertical scales.
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T=30mK 
Vg

0.4 H=0.2T
Rn=140kM

0.2

0 to

-0.2

-0.4

-40 -20 0 20 40

I(pA)

Fig. 1.4: I-V characteristic of a single Josephson junction with Rn= 140Wkf and estimated

C IJF taken in a magnetic field of 0.2 tesla at T=30mK.
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.ig. 1 .5: I-V charac .tnstik 3f a single Josephson junction with Rn= llOkf and estimnated

C -1 ;F taken in a magnetic field of 1.2 tesla, at T=30m~K.
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In this report, we discuss these observations, and explore their interpretation in

some detail. We begin in Chapte . 7w providing some theoretical background neces.sary to

discuss our experimental results. An account of the methods used in the fabrication and

measurement of the samples is given in Chapter 3. Next, in Chapter 4, we describe our

experimental results. We then discuss a few simple models which we have used in thcir

interpretation: We first examine the semiclassical models used in interpreting earlier work

in Chapter 5 to see to what extent they can explain 'he new data by simply taking accoitnt of

the new parameter regimes involved. Second, in Chapter 6, we investigate to what extent

the introduction of a more fully quantum mechanical picture, including large quantum

uncertainties in • space, can account for the remaining nitqw'es. We conclude in Chapter 7.
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CHAPTER 2

THEORETICAL OVERVIEW

This chapter develops some theoretical tools that will be used extensively in the

discussion sections of this report, in Chapters 5 and 6. We write down and justify a

Hamiltorian which includes the different components that are necessary for a description of

Josephson junction dynamics: Josephson tunneling, quasiparticle tunneling and the effect

of the environment, charging effects, and the effect of an external biasing source. We then

examine some simple consequences of the Hamiltonian description in the quantum

mechanical and classical limits.

2.1 The Josephson Hamiltonian

The Josephson junction is described by the two quantum mechanical conjugate

variables 0 and Q.

10,Q] = 2ie (2.1)

As described in Chapter 1, 0 is the phase difference between the superconducting

wavefunctions on each electrode, and Q is the charge difference across the junction. In

visualizing the problem, it is useful to establish a comparison with mechanics: using an

appropriate normalization, we can treat 0 as the position variable X, and Q as the

momentum variable P. The role of the system mass M, is then played by the capacitance

C.

0 4-# X, (hl2e) Q #4 P, (h/2e)2 C +-4M, (2.2)
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The Josephson junction Hamiltonian HO, discussed in Chapter 1,

2Ho ( €, Q )-"E,_ - E osq(2)

can then be simply mapped into the Hamiltonian

H , P ) ý + V ( X)(.4
2 M (2.4)

The charging energy term in (2.3) then plays the role of a kinetic energy term, while the

Josephson term plays the role of the potential energy.

To provide a more complete description of the system, it is necessary to incorporate

other important factors. First of all, 0 is a macroscopic variable, since it is given by the

difference in phase between the superconducting wavefunctions associated with each

macroscopic junction electrode. Therefore, 0 is coupled to the "environment", made up of

a large number of degrees of freedom. In the mechanical analog, the system loses energy

by friction. This friction-like term may strongly affect the dynamics of the system, and

must therefore be incorporated in the discussion. Following an approach pioneered by

Caldeira and Leggett [Caldeira and Leggett 1981, 1983] the effect of the environment can

be included in the Hamiltonian by adding an additional term He.

Finally, in order to measure the system, we need to excite it with a measuring

current, produced by an external sourue. The external current source can be added to the

system by adding another term to the Hamiltonian which we call Hs.

The complete Hamiltonian is then given by

H(O,Q) =H. +H, + H, (2.5)
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This chapter is devoted to a more detailed discussion of the origin of the different terms in

(2.5), and of their effect on the dynamics of the system.

S2.2 The Basic Hamiltonian Ho

The most basic Josephson junction Hamiltonian HO, given above by (2.3), is

composed of two terms. The first term, equal to Q2 /2C, represents the capacitive charging

energy associated with a charge difference* Q between the electrodes.

If we study a tunnel junction whose electrodes are superconducting, we must add a

second term to the Hamiltonian. The right and left electrodes can be described by the

complex wavefunctions WR and IFJL. If the two wavefunctions overlap there will be an

energy term due to their interference, given by

AE =- (constant) (WRi /L* + WL W')

= -(constant)/ IfR PV1 cos 0

- Ej cos 0

The value of the Josephson energy EJ was calculated by Ambegaokar and Baratoff (1963],

and is equal to, for an ideal tunnel junction,

E hA tn( 'E 8e 2 R, 2\8) (2.6)

By "charge difference" we mean the difference in charge one one electrode between the present state of the

system and the neutral state.



14

If we incorporate the charging and Josephson terms in the description of the Josephson

system we thus arrive to the basic Hamiltonian HO given in (2.3).

2.2.1 * space solutions

To express (2.3) in ý space, taking account of the quantum nature of the phase-

number relationship described by (2.1), we make the operator replacement Q-+ 2ie d/34,

and obtain

H= -Ej cos 0 - 4Ec 9/69- (2.7)

where, again, Ec=e212C. We see that the parameter x - EcIEj provides a measure of the

relative importance of the charging energy in forcing a delocalization of the phase, away

from the minimum potential energy point at 0 = 0. Physically, this reflects the uncertainty

relation between phase and particle number (or charge):

AO AN Z 1 (2.8)

where N = Qle. Forx << I the ground state is a narrowly peaked wavefunction W(O) with

width of order x114, and there are many higher states in each minimum, resembling the

excited states of a harmonic oscillator. By contrast, when x >> 1, the term in Ec is

dominant, and ig approaches a constant to minimize it. At this point, one should no longer

ignore the periodicity of the potential term -Ej cos 0 and the question of whether 0 should

be viewed as an extended variable, or a cyclic one such that 0 and 0 + 2;r (or 47r, if we

include quasiparticles§) are physically indistinguishable. From the former point of view,

V(•) has the form of a Bloch function u(0b) eiqo, where u(0) is periodic with period 21r,

§ See, for example, Ambegaokar, Eckem, and SchOn [198.,j.
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from the latter point of view, y4') is only defined between -x and +x, and it must satisfy

appropriate boundary conditions at those points. So long as we restrict our attention to the

ground state, which we expect to correspond to q = 0 in the Bloch picture, and to the

boundary conditions W(x) = f(--x) and V(s) = V/(-xr) = 0 in the single cell picture, both

pictures yield the same eigenvalue problcm, and the same energy eigenvalue E.

Since this problem is one-dimensional, it is easy to solve by numerical means.

However, one obtains more insight by a variational approach, using trial functions

appropriate to the limiting cases of x<< I and x>>], respectively. For x < <, one assumes

a Gaussian trial function,

2

e 4 cr (2.9)

where ar, the rms spread in 0, is chosen to minimize the expectation value of (2.9). The

resulting minimum energy is

02

E 2j21~ ~) (2.10)

where cr has the value determined by the solution of the transcendental equation

2

a4 =e- =2x (2.11)

Forx << 1, (2.11) leads to the analytic approximation

E = -Ej [1- (2x)l/ 21 (2.12)

L .
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In the other limiting case ofx >> 1, an appropriate trial function which satisfies the

boundary conditions at the edge of the cell is

V/() -(1 + a cos *) (2.13)

Minimization of the expectation value of the energy with respect to the parameter a leads to

the condition that

a = 44(1 + I/8x2)1/2 - 11 (2.14)

For this value of a, the energy is

E = -Ej 2x [(1 + 1/8x2 )112 - 11 (2.15)

For x > > 1, this has the limiting form

E - E;18x = - Ej2/8E, (2.16)

where the second form shows explicitly that in this limit the binding energy is second

order in Ej, in contrast to binding energy in the classical limit, which isfirst order in EJ,

since E = -Ej.

These variational approximations to the ground state energy are plotted in Fig.

2.1 (a) The tight-binding approximation (2.9) gives a lower (more accurate) energy for x <

1/4, and the weak-binding approximation (2.13) gives a better energy for x > 1/4.

Numerical solutions in the cross-over region near x = 1/4 show that the exact binding

energy exceeds the better of the two approximations by less than 5%, even in the worst

case. The wave functions V4'o) for values of x ranging from 0.05 to I are shown in Rg.

I
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r• -0 .0

-0.2

-0.4

SEJ -0.6'

,-0.8. (a)

0.0 0.2 0.4 0.6. 0.8 1.0

1.0(

0.8-

0.6'

0.4.

0.2'

0.0 -n0 7C

Fig. 2.1: (a) Estimated binding energy E vs. x = Ec/EJ. The two curves correspond to two
different trial wavefunctions, as outlined in the text. (b) Estimated ground state
wavefunction Vr(O) as a function of 0, for different values of x. From top to bottom the
curves correspond to x = 1, 0.5, 0.3, 0.1, 0.05.
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2.1((b). In this figure, the loose-binding approximation is shown forx > 1/4 and the tight-

binding approximation forx< 1/4. Qualitatively, it is clear that forx > 1/4, the probability

density for the phase variahle #. is sufficiently delocalized that it is no longer a good

approximation to treat 0 as a semiclassical variable.

2.2.2 Q.space solutions

To investigate the regime in which Ec > EJ, it is convenient to express the problem

as a function of the charge variable Q. In the Ec >> Fj limit, quantum phase fluctuationf

become very large while Q can be treated classically. Moreover, by going to Q-space, an..

assuming Bloch-function solutions to the Hamiltonian (2.3) we automatically take care of

the 21c phase periodicity of the Josephson potential.

We will first examine the regime in which the charging energy is dominant over Ej.

A plot of the charging term in the Hamiltonian (Q2/2C) as a function of Q is shown in Fig.

2.2. The voltage across the junction is given by V= dE/dQ. To model single electron

tunneling we can for the moment include in the system a set.ond mechanism which is able

to transfcr electrons from one side to the other in lumps equal to the electron charge e. Due

to the discreteness of the charge transfer, two types of transitions are possible, indicated in

Fig. 2.2 by (1) and (2). If the initial Q is less than e12 (V<e/2C), as in (1), the transition is

energetically unfavorable. If the initial Q is larger than e/2, the transition is favorable. If

we add charge to this system in a continuous fashion, by attaching highly resistive leads,

we have the following situation. For V < e/2C, electron tunneling is discouraged and the

dynamic resistance of the device is high. For V > e/2C, the tunneling process becomes

energetically favorable and the dynamic resistance decreases. The resulting I-V

characteristics of the device are then those typical of the Coulomb blockade, shown in Fig.

1.1(a) and 1.4.
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2
AQ- V=dE/dQ
2C

---- ---- ------- ~- V=e/2C

-e/2 e/2

Fig. 2.2: Energy stored on a Normal - Insulator - Normal junction as a function of charge Q.
The two arrows indicate changes in Q of magnitude e, corresponding to having one electron
tunnel from one electrode to the other. For Q < e/2, this transition is not energetically favored.
For Q > e/2 it is energetically favored. Adapted from Averin and Likharev (19861.

L
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If we now put the Josephson potential term in the Hamiltonian, postponing the

further treatment of single electron effects to Section 2.3, the energy spectrum ,,f the

Josephson device then assumes a band-like structure, reminiscent of that of a one

dimensional crystal. The wavefunction W(O) takes the the form of a Bloch function u(0)

AeOq, where u(0) is periodic with period 2x. This approach appears particularly appropriate

for the case Ec >> Ej (that is, x >> 1) where the band structure approaches that of a free

particle, with small energy gaps caused by the periodic Josephson potential. The

"quasicharge" q, playing a role analogous to the crystal- or quasi-moment.um in a solid, can

then be accurately identified with the charge difference Q. Fig. 2.3 shows a sketch of the

energy spectrum of the Josephson system, drawn both as a function of q and 0 for

comparison, for x - 0.1 and 2.5. The qualitative behavior of the device is simple: the

device can charge up, as a common capacitor, but it can only discharge by having electrons

tunnel from one electrode to the other. While the charging-up process may be continuous,

the discharge by tunneling is discrete, in units of 2e for Cooper pairs. In this limit, EJ is

the width of the the gaps at q = ± e,where the "kinetic energy" Q212C = e2 12C = Ec. In the

opposite limit, x << 1, because of the negligible MQT between adjacent minima, the bands

approach zero width, and low-lying ones are separated by the resonance frequency of a

Josephson potential well, AIom = (8EcEj)112 .

2.3 The Effect of Dissipation

In their classic 1981 and 1983 papers, Caldeira and Leggett (CL) developed a

successful method for incorporating the effect of dissipation in a macroscopic quantum

mechanical Hamiltonian. [See Caldeira and Leggett 1981, 1983]. CL suggested modeling

the environment as an infinite collection of harmonic oscillators. While the exact nature of

the environment Hamiltonian term is usually unknown, this harmonic oscillator model is an

extremely good representation of the system, as long as the extent to which any single

L
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degree of freedom is perturbed is small.# Building on concepts developed by Langer,

Coleman, and Callan [Langer, 1967; Coleman, 1977; Callan ahd Coleman, 1977] CL use

an "instanton" technique to calculate the effect of dissipation on the tunneling rate out of a

metastable minimum, a calculation which can be easily applied to a Josephson device.

2.3.1 The harmonic oscillator Lagranglan

Throughout this section we refer to the "system" as the basic system of interest (i.e.

the Josephson junction Hamiltonian Ho), and to the "environment" as the collection of

infinitely many degrees of freedom surrounding the system. Reverting to the "mechanics

analog" notation introduced in Section 2.1, we write the basic system Lagrangian as

p 2

LIYS= E - V (X ) (2.17)

Following CL, we write down the general Lagrangian for an infinite set of harmonic

oscillators, modeling the environment

Losc= 2 (rjx 2T / J i l °x)
L ((2.18)

where mj, xj, and ay are, respectively, the mass, position and resonance frequency of each

oscillator. The effect of the environment on our system can then be modeled as an

interaction term:

# This does not imply that the treatment is restricted to low damping cases, s:.ice the collective effect of all

degrees of freedom can be large.



23
! ~LW-t= • (Fj(X)xj +O(.X))

1 (2.19)

the critical assumption is, again, that each single degree of freedom is only weakly

perturbed, so that the cross term can be taken to be linear in xj. CL argue that the

representation in (2.19) is valid without loss of generality. The function 0(X) is related to

questions of frequency renormalization and, for many physical systems of interest is given

by

F(X)
4(X )=- 2

S• (2.20)

This completes the statement of the Lagrangian. In order to examine the effect of

dissipation on the dynamics of the Josephson system, further simplifications must be

made. In the following s, -tion, (3.2.2) we cover the assumption of linear dissipation,

often used to treat Josephson junctions in the semiclassical regime. We use it to briefly

illustrate some consequences of damping on the phase tunneling rate and energy levels of

tLe Josephson system.

2.3.2 The case of strictly linear dissipation

In the limit of "strictly linear dissipation," the cross-term in the systerr,-environment

interaction Lagrangian is linearly proportional to the position (or phase) variable X:

Fj =Xcj (2.21)

I
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Leggett [1984], shows that an arbitrary linear dissipation mechanism will satisfy (2.21).

This includes thus not only strictly ohmic dissipation (having a simple resistor in parallel

with the Josephson junction) but also any other linear admittance of arbitrary frequency

dependence shunting the tunnel junction. The constants cj are then related to the complex

admittance of the system, as derived by Leggett [1984]. For the special case of ohmic

dissipation, this relation is particularly simple: We define a spectral density for the

harmonic oscillator bath us:

c.

J(W). ~-17, - 6(0)-J2 J . m 
(2.22)

Then,

J(4) = 77 0) (2.23)

where 77 is the simple friction coefficient for the system. In the case of Josephson junction

shunted by a linear resistance R, 71/M corresponds to 1/RC.

Once we assume (2.21), we can write down the complete Hamiltonian for the

system and environment in a rather transparent way:

P 2 1-, jo,22( C
R V• V(X ) +• IS " W2

H=ArV(X)X ~- - (2.24)

Equation (2.24) evokes a simple heuristic picture of a system of coupled harmonic

oscillators, as sketched in Fig. 2.4.

The model of CL has had its greatest success in the c,.culation of the effect of

dissipation on the tunneling rate out of a metastable well of the Josephson potential. CL
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Ilk)

Fig. 2A4: Simple representation of the interaction between the Josephson
system and the environment. The large pendulum is a rpresentation of the
Josephson tunneling interaction, the smaller pendula represent the oscillator
bath.
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[1981,1982] calculate the density matrix for the system, in the strictly linear dissipation

limit. Since the only interest is in the motion of the coordinates of the system, and not of

the environment, they can focus on the reduced density matrix, given by

K(Xi,X : T)a 2W',(Xj ,{xajj)W_(Xf I .i})exp( En

(2.25)

where the subscripts i and f denote the initial and final values, the product over a accounts

for the contribution of the infinite degrees of freedom of the environment, and the sum over

n covers the states of the system. CL choose to examine the path integral representation of

(2.25), which, after considerable simplification, integrating out the oscillator degrees of

freedom, is expressed in the following form:

x(T) = xf

K(Xi, X: T) = Ko(T) (o)X DIX(r)}exp{- Sff[X((r)] / f}

where D (X(r)) denotes the integration ever all possible paths from Xi to Xf.*, and csh

denotes the hyperbolic cosecant. The "effective action" Seffis given by

S 1k'0 .2 (X Idr+ _- J,[ f a(r - X (T)]] 2 dr
Sfff[X(r)]=J + V(JL2 2 -

(2.27)

with

For a description of path integration, please see Feynman and Hibbs [1965, chapter 2].
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a11 ~) A 0 jJ))exp (- 0 r - r'bdo) - -
S(r- ?) (2.28)

where i = (kBT)-1, and the last approximate equality is only valid in the ohmic case.

These results can be applied to a variety of problems. The tunneling rate out of a

metastable potential well is given by the imaginary part of the ground state energy, which is

obtained from the density matrix K for Xi = Xf = 0. From this, one key general

consequence of the model becomes apparent: Since the damping term [the rightmost term

in (2.27)] is positive definite, the effect of damping is to increase the effective action and

thus increase the exponent in the integral (2.26). While in the absence of the environment

the density matrix need only be defined in X (or 0) space, when the collection of harmonic

oscillators is included, the leading paths in the density matrix path integral are lengthened

by a detour in the infinite dimensional space of the harmonic oscillators. The final effect

will always be to suppress the tunneling rate and lower the ground state energy of the

system.

The tunneling rate can be extracted from (2.26) in the semiclassical limit by using

the method of steepest descents. The leading contributions to the integral (2.26) will then

be from paths around the saddle point of the action Serf. Callan and Coleman [19771 show

that the ground state energy Eo can then be expressed in the formf

E= 2- hKe (l + 0(h)) (2.29)

The factor (I +O(h)) implies that the expression is correct within additional dimensionless terms which

contain a factor of h, i.e., the expression is accurate in the semiclassical limit.
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where the "bounce" B is equal to the action evaluated along the saddle-point path, and %o is

the classical resonance frequency of the well. The leading contribution to the bounce

simply comes from the classical path in which the potential V(X) is turned upside down

and the particle is allowed to accelerate down the energy well and "bounce" back to the

starting point, as shown in Fig 2.5. While the term in the exponential B is due to the

"shortest" path, the prefactor K is an indication of how many paths are contributing to the

integral. The addition of damping thus appears to lower the ground state in the well. In

general, the addition of damping to a stable or metastable system tends to squash the energy

levels together, and push them towards the bottom of the well. A nice treatment of this is

given by Esteve, Devoret, and Martinis [1986], who analyze the effect of an arbitrary linear

damping mechanism on the energy levels of a Josephson device using simple second order

perturbation theory on the damping Hamiltonian. As the tunneling rate increases, however,

the problem becomes less semiclassical as more and more paths begin to contribute, and the

approximation breaks down.

The tunneling rate Fis given by

F = -2 1m (Eo)/A (2.30)

If the potential V(X) is metastable, the above expression is not equal to zero. For the case

of ohmic damping CL [1981,1982] estimate Fto be equal to, at T = 0

0)o

r= ---•qV'T exp(- vs) (2.31)

where ao, is the resonance frequency of the well, v is the barrier height normalized to fw 0o,

and s is the bounce action normalized to fiv. In the case of weak damping, s and X are

given by
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V(X)S~(a)

x

bounce path

% x.

(b)

Figure 2.5: (a) A metastable potential. (b) Representation of classical
"bounce" trajectory on upside-down potential
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LJ= 1+" -3) a+ O(a 2)

z= 12/'6" f I+ ca+ J.J (2.32)

where a = f/Mamb, ob being the resonance frequency of the inverted potential, and c - 2.8.

These values are calculated for a cubic potential of the form V(X) = (1/2)ft2X2- (1/3)AX 3,

but they apply with reasonable accuracy to the tilted cosinusoidal Josephson potential.

From (2.32) it is clear that the effect of damping becomes significant when the

value of a becomes of order one. If we express this in variables more common to

Josephson junctions, we have (for zero current bias)

1 RQ E•

R= Ej/2 (2.33)

where wo = (8EcEj)l12/t, and RQ = h/4e 2is the quantum unit of resistance.

It is possible to extend the calculation and derive results as a function of temperature

as has been done by several authors [see, for a review, H. Grabert, 1985, and P. Hlinggi,

1986]. The tunneling rate increases with temperature. Qualitatively, in the low damping

limit, the rate is essentially temperature independent below a crossover temperature Tcross,

with

Tcross +-a' - a)(23

More exactly, [see, for ex., Grabert, et al., 1987J the normalized bounce action s becomes:

--------------------
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-�.2 +r '2J (2.35)

where 0 TITcross.

The major results of this section can be summarized as follows: CL developed a

very nice way to include dissipation in a quantum mechanical Hamiltonian. The effect of

dissipation is to decrease the quantum tunneling rate. CL estimated the tunneling rate in a

semiclassical (low h) limit, and its decrease should be significant when the parameter a

(eq. 2.33) is of order 1. The crossover temperature from thermally activated to quantum

behavior is given by (2.34) in the low damping limit.

While these results have been proven to be remarkably accurate in predicting the

results of tunneling experiments, they break down when the energy level spacing is not

much smaller than the barrier height. Therefore, while they present a qualitatively accurate

and heuristically valuable method, the results in this section are expected to break down

when Ec is of order Ej. In the latter case, if damping is sufficiently low, quantum

fluctuations in 0 dre expected to become comparable to the periodicity of the Josephson

potential (2ir), as illustrated above in Section 2.2.1, and a full quantum treatment is needed.

2.3.3 Microscopic model of dissipation in a Josephson junction

In 1982, Ambegaokar, Eckern, and Schdn, (AES), developed a microscopic model

for dissipation in a Josephson tunnel junction. By using a functional integral approach,

AES integrate out the quasiparticle degrees of freedom, responsible for the dissipation, and

obtain the following form for the effective action Serf

S~ff[~ AO LJ~4M 2 + V(~Jf

f 12

0

+ fdrjfaqp(,r- ') [I - Cos (T (2.36

2 f
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where we remind the reader that in our notation the "mechanics" variable X and the

Josephson system variable 0 are interchangeable. The form in (2.36) thus reduces to the

CL form in the limit of small Oft) - (,'e). The Fourier transform of the kernel aqp(O),

aqp(a9), is proportional to the quasiparticle I-V response lqp(V), i.e. the I-V curve one

would measure in a perfect superconductor - insulator - superconductor if the Josephson

effect were destroyed. Specifically, lqp(V) = -2e ccqp(eVI/). aqp(Ow) is has the following

limiting forms, at T--O [Eckern, Sch6n and Ambegaokar, 1984]:

3 i•r h hda [ow<
3 2 2e2 R, A'

a,p( 0.-
2e2 R. (2.37)

with the voltage V corresponding tof/og/e. If only small frequencies and small variations

of the phase/position variable are relevant to the problem, we can expand the trigonometric

term in (2.36). The result is that the quasiparticle term in the effective action takes the same

form of the kinetic energy term [see Eckern, Schbn and Ambegaokar, 1984]. It is then

possible to identify the effect of quasiparticles in this regime as simply adding mass (or

capacitance) to the system. In capacitance units, we have:

6C = 3a*
32 ARn (2.38)

For parameters typical for our samples, having normal resistances in the kiloohm region,

this term is usually of order 10"17F, and is much smaller than the geometrical capacitance of

the system, of order 10-15 F.
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The effective action quoted in (2.36) gives the problem an interesting twist in that it

is periodic in the phase, but with period 4r. The simple reason for this is that we have

now allowed in the problem electrons (of charge e) as well as Cooper pairs (of charge 2e).

As a result, an acceptable basis for the Hamiltonian are 4zr periodic plane waves of the form

(0) - exp(inM/2), where n is an integer. These are now eigenstates of the charge operator

Q=2ie di/d, with eigenvalue ne, allowing for changes of charge in units of e. On the other

hand, 2r periodic wavefunctions would only allow changes in units of 2e. Finally, for the

case of ohmic dissipation, there is no phase periodicity in the effective action, given by

(2.27), and nonperiodic wavefunctions are allowed. This is consistent with the statement

that a classical resistive shunt can pass charge in a continuous fashion.

The ability of the system to change electrode charge in units of e has profound

changes on the energy spectrum of the system, whose unit cell in charge space must now

be of width e. This has been derived by various authors in the regime of large Ec/Ejt. Fig

2.6 shows a sketch after the calculation of Guinea and Sch6n (GS) [1986,19871. The

spectrum is similar in character to the one shown in Fig. 2.3. The horizontal variable, Qx,

which corresponds to q in Fig. 2.3, can again be interpreted as the total charge applied by

some external means to the junction. As we apply more charge, the system charges up

through the parabolic sections of the bands, and discharges by tunneling electrons across

the junction. The main differences reflect the fact that the device can now discharge by

tunneling in units of e as well as 2e.

From (2.37), the dynamic resistance dVIdl approaches infinity as the voltage

approaches zero, at T=O. This is not usually observed in real Josephson devices (including

ours). This is usually blamed on imperfections in the junction barrier or to the existence of

t See, for example, Averin and Likharev [1986], Mullen, Ben-Jacob, and Schuss [1988), Guinea and Schon

•-j [1986,1987].

iT
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E(Qx)

EIEj

-e -e/2 0 e/2 e Qx
Fig. 2.6: Sketch of the energy spectrum as a function of applied charge derived
for a Josephson junction in the large charging energy limit. [After Guinea and
Sch6n, 1987.]
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pair-breaking effects, not included in the approach of AES. Useful phenomenological

approaches to include such complications are discussed below, in Section 2.5. 1.*

2.4 The Effect of the External Source

In order to measure the system properties, we must apply a current I. There has

been a lot of speculation as to the fest way to model a typical source of current , as to what

its intrinsic impedance at the high frequencies of interest might be, and whether it should be

treated classically or quantum mechanically. In this section, we assume when necessary

that the system is indeed effectively current biased. In the discussion of our experimental

work (see Chapter 6) this assumption is relaxed for the higher resistance samples.

2.4.1 O-space approach

The energy E contributed by the external bias to the Josephson system is the

integral of the power fed into the junction:

2 e dt (2.38)

" we have used the Josephson relation V = (*/2e) d/ldr. Integrating by parts, we

have,

2e 2 e di (2.39)

Guinea and SchOn [1986; 1987] for example, use a phenomenological low voltage resistance Rqp. A

Ki
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(a)

U(4)

(b)

(c)

(d)

U(C 
I Ir

Fig. 2.7: The effect of current on the "washboard" potential. (a) no current is applied.
(b) I is increased to a value less than tl.e critical current. (c) I equals the critical current.
(d) I is decreased until the particle is retrapped
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If the -.urrent is constant, the second term in (2.39) is zero, and we can incorporate the

effect cf current bias by including a term equal to

Hs (hWl2e) 0 (2.40)

to the Josephson Hamiltonian. As a result, the effect of dc current bias, figuratively

speaking, is to tilt the Josephson "washboard" potential, as shown in Fig. 2.7. The effect

of a tilt is to lower the effective energy barrier between wells, and to decrease the resonance

frequency of the individual well.

2.4.2 Q - space approach

The charge variable Qx can be interpreted as charge applied to the junction by

some external means. As a result we can make the following identification:

QdQ
dt (2.41)

Following Widom et al. [1982], Guinea and Sch6n [1986, 1987] do not use the approach

oulined in 2.4.1 to include the bias into the Hamiltonian. Instead, they simply include Qx

in the charging part of the Hamiltonian,

Q+ )2

HO+ H, - 2C Ej cos (0) (2.42)

The two charge variables can be interpreted in the following way: Q is an operator and is

the fraction of total charge which does not commute with 0; it fluctuates due to tunneling

through the junction barricr. Qx is fixed by external constraints, which are assumed strong

I-
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enough to justify ignoring fluctuations in Q, and treating it as a classical variable. While

Qx can be varied continuously, the expectation value of Q can only change in discrete

lumps of size e.

GS begin with the Hamiltonian description of (2.42), include damping, as

discussed in Section 2.3.3, and arrive at the energy band spectrum shown in Fig. 2.6. In

the presence of an imposed current I feeding charge onto the electrodes, the external charge

variable Qx advances at a rate dQx/dt = 1. The instantaneous voltage is given by V =

dE/dQx, 'While the energy spectrum may appear straightforward, the motion of the system

along the energy band may be quite complex, even if we assume a perfect current source

(an assumption which we later relax). If we begin at Qx=O, the system can at first only

charge up capacitively. Once Qx is incresed to a value greater then e12, however, the

system can follow the lower band or it can proceed upward, continuing to accumulate

charge on one electrode, eventually relaxing to the lower band by having a single electron

tunnel from one electrode to the other. Moreover, if the current is large enough, the system

can Zener tunnel to the higher bands (which corresponds to charging up faster than

electrons can tunnel to equalize the built up charge). Depending on the values of these

various relaxation times, the size of the bandgaps, and the actual nature of the current

source, one can obtain very different dynamics, corresponding to a large variety of possible

I-V curves.

As the current I=dQldt increases, there is an increasing probability that the system

will jump across the bandgap at E - Ec at the zone boundary (Qx=e), rather than

-r,-ttinuing to cycle up and down in the lower bands. By simply transcribing the usual

calculation of this Zener tunneling probability to the present context, we have previously

shown [lansiti et al., 1987a] that the probability of a jump on each cycle is
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where we define the "Zener" current Iz by

Iz = neEj 218fiEc (2.44)

It will be shown in Chapter 6 that these arguments will lead to an estimate for a reduced

critical current, given by lZ,

2.5 The Classical Limit

We have discussed the different terms which comprise the Hamiltonian of a

Josephson junction. We have also discussed some of the quantum mechanical approaches

which have been applied to the system. For conventional junctions (with Ej >> Ec),

quantum fluctuations in 40 are very small, and the Hamiltonian can be treated classically.

This section gives a basic treatment of Josephson junctions in the classical limit, which will

be used extensively in the remainder of this report. We rewrite the complete Hamiltonian:

H = - + •-e(- 1,, cos 10 t) + H,(O, O',{x 1)H C 2 e (2.45)

where He represents is the environment term, which may be a function of both the phase

and the environmental coordinates I x). The "unfluctuated" critical current is Ico = (2e01)

Ej. We can then obtain the classical Hamilton equations of motion, in the conjugate

variables Q and

r'
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Q = I - I,. sin 0 + 1,(0, 0',{x ]) (2.46)
2e Q
it C (2.47)

Since the voltage V = QIC, (2.47) is a statement of the ac Josephson effect. (2.46) can be

interpreted as a current conservation equation; it provides the basis for the resistively and

capacitively shunted junction (RCSJ) model [Stewart 1966, Mc Cumber, 1968].

2.S. 1 The RCSJ model

The combination of the capacitive, Josephson, and resistive channels as parallel

circuit elements is the essence of the RCSJ model. Equation (2.46) implies that the charge

fed onto the junction electrodes by the source at a rate I can be carried off by either the

Josephson or the quasiparticle "channels", or it can be stored on the capacitor C. This

implies the simple picture of three parallel circuit elements shown in Fig. 2.8. The

capacitor is the simplest part of the circuit, the only one that is intrinsically linear. The

supercurrent-carrying Josephson channel is more complicated

1, P-1, sin 4'=Ic, sin(-!-' JVdt)(.8

where Is is the supercurrent. (2.48) shows that the Josephson channel is inductive in

nature. By differentiating (2.48) with respect to time, one can obtain the characteristic

Josephson inductance,

L~= 2 CO cosý (2.49)

The last channel, the quasiparticle contribution, is the most difficult one to

characterize. The effect of the quasiparticle environment may be divided into two parts.
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Fig. 2.8: Schematic of the equivalent junction circuit used in the RCSJ model. TheJosephson, quasiparticle and capacitive contributions are viewed as three different channels
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One one hand, there is the frequency dependent response to an excitation current or

voltage. On the other hand, at finite voltages and temperatures, fluctuations in the

dissipative quasiparticle "bath' have a significant thermal noise or shot noise contribution

to the dynamics of the device.

The characteristic quasiparticle response was derived by Bardeen [1961] and

Cohen, Falicov, and Phillips [1962]. In the latter's approach, the current through the

quasiparticle channel is expressed as an integral over the product of densities of states on

each side of the tunneling barrier. Their approach, originally developed for superconductor

- insulator - normal metal (SIN) tunneling, can be applied to the SIS case, with

Iqp A "IiTI 2 N,(E)N 2(E + eV )[f(E)-f(E + eV)]dE

I -f E JIE + I[f(E)f(E + eV )]dE

(E + eV) - (2.50)

where A is a proportionality constant, /T/2 is the square of the tunneling matrix element

(assumed energy independent) A is the superconducting energy gap, V is the bias voltage,

and f is the Fermi function. The simple interpretation of this result, known as the

"semiconductor model" [see Tinkham, 1975] is that the quasiparticle current is proportional

to the sum over all states of the product of the probability of having an excitation on one

side of the barrier, times the probability of finding an empty "slot" on the other side. Few

quasiparticles are available at low temperatures so that, for V < 2A, lqp is very small, and

the dynamic resistance is very high. This response is sketched in Fig 2.9. At T=O, the

dynamic resistance dV/dI approaches infinity at low voltages. In a more complete

treatment, as outlined briefly above in Section 2.3.3, the ideal low-voltage response is

shown to be capacitive (also at T=O), with a small characteristic capacitance given in

(2.38).
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The ideal situation outlined in the preceding paragraph is not usually encountered

experimentally. In practice, junctions are imperfect, and some other mechanism is present

which at low temperature gives a current larger than the ideal quasiparticle response,

introducing additional dissipation. The nature of possible additional mechanisms is in

some dispute, and mayn be different depending on the experimental situation: microshorts

in the barrier, pair-breaking effects in the superconducting electrodes, and the effect of

Andreev reflections have all been suggested. A good phenomenological approach, which

has succeeded even in cases where high accuracy was needed [see, for example, lansiti et

al., 1985], is to simply approximate the quasiparticle response by a piecewise linear

resistor, so that

V
R(V- (2.51)

with all of the environmental degrees of freedom absorbed in R(V). R(V) is taken to be

A I + A 2

Rn, V > eR(V)=I
A1 + )=

R, V !9< I+-
'e (2.52)

where Rn is the normal resistance, and RL is a phenomenological leakage resistance. The

temperature dependence of the leakage term is found (at least for our samples)# to be well

approximated by the form

RL-I(T) - RL-J(O) + Rn-'e-AkT (2.53)

See the experimental discussion in chapter 4.
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where the second term's temperature dependence reflects inrinsic quasiparticle thermal

excitation.

Finally, we must take into account the contribution of the noise fluctuations in the

resistive channel. The autocorrelation function for a tunnel junction was derived by Dahm,

et al. [1969] to be given by, at low frequencies ca << eVA¶,

A A ( t + t,.)) = 6U( t, 2) k T
NN (V) • 2O e _ _Nk 8 T v R(V) (2.54)

where R(V) is defined here as VIIqp(V). Excellent agreement with experiment has been

obtained by using the simplified expression for R(V) given above in (2.52) [Danchi, et

a1.,1984; lansiti, et al., 1985]. As shown in (2.54), the autocorrelation function reduces

to that of the Johnson noise formula at low voltages.

2.6 Junction Dynamics

We can now use the tools developed in the previous sections to discuss the most

basic dynamics of a Josephson junction. We limit the present topics to relatively well

known techniques, which have succeeded in modeling the behavior of conventional low

resistance, high capacitance junctions. We will thus form a base for the discussion of our

experimental results, given in Chapters 5 and 6, after the presentation of our observations

in Chapter 4.

We begin our present discussion in the zero temperature classical limit in Section

2.6.1. In Sections 2.6.2 and 2.6.3 we discuss some simple consequences of significant

(but still small) contribution of thermal and charging energies, respectively.
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2.6.1 The classical regime

In this classical description, the system can be effectively visualized (see Fig. 2.10)

as a particle lying at the bottom of a well of the "washboard" Josephson potential -EJ cos 4

[Fig. 2.10 (a)]. The effect of the current bias is to tilt the potential, by adding a term -

(*12e) 10 [Fig 2.10 (b)]. At low currents the particle is trapped in the well, and the average

of the voltage V=(li/2e) doldt is zero. At I = Ic [Fig. 2.10 (c)] the tilt is enough to allow

the particle to escape. After having escaped, the particle will continue to run down the

washboard, dissipating eneigy at a rate <V2 /R(V)>. The average voltage in this regime

(corresponding to the terminal velocity in our mechanics analog) is such that the loss in

potential energy equals the loss due to dissipation (friction). If we now decrease the

current, the particle will not immediately retrap in a Josephson well, since it has inertia.

The retrapping current lr is less than Ico, and is approximately (if the damping is low) given

by the current at which the kinetic energy is equal to the energy barrier to be surmounted

[Fig. 2.10(b)]. Stewart [1966] and Mc Cumber [1966] obtain:

1 4 co 2e-1- ' C
O/ C(2.55)

We believe it is reasonable to substitute RL for R in /3c in this case. To justify this, it is

necessary to further examine the physics behind this formula for Ir. In the presence of

damping, the system loses energy at a rate dEldt = - V2 /R. V = (*f/2e)d4,/dt, and the total

energy E stored in the capacitance, is 1/2 CV'2 . By combining these relations, one can write

dE X 2 (E + E. cos )

do 2eR C (2.56)
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Fig. 2. 10: Typical underdarnped RCSJ INV characteristic. The paints labeled (a)
through (d) correspond to the regimes sketched in Fig. 2.7 (a) through (d).
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in which R is to be understood as being a function of the instantaneous voltage, which is

determined by integrating this equation forward in 0. The condition for Ir is that, if the

particle starts at the top of one maximum of the tilted washboard, where it has zero

velocity, it should just exactly reach the next maximum, again with zero velocity. If the tilt

(i.e., current 1) is any greater, the representative point wiiU run away at a rate limited by the

damping; if it is any less, it will be trapped in the next minimum. For this critical trajectory,

the voltage oscillates between zero (at the maxima) and a maximulm value such that 1/2 CV2

2Ej, corresponding essentially to the plasma frequency. The average voltage, as read off

the I-V curve, is evidently less than 2A/e. Theoretically, one expects the quasiparticle

conductance to be only weakly dependent on voltage for eV < 2A. Accordingly, it is

plausible that the average R determining lr should be quite similar to the measured RL at

the average voltage.

2.6.2 Effect of small thermal fluctuations

The effect of thermal fluctuations on the dynamics of a Josephson device has

received extensive experimentalt and theoretical, attention, in the regime of Ej >> Ec,,

kBT. We limit our discussion to the underdamped case, relevant for our samples.

Since we are still in the classical regime, we will still use the particle-in-the-

washboard analogy of Section 2.5. The basic idea is that now the particle can be thermally

activated out of the Josephson potential well, at a current below 'co [see Fig. 2.11 (a)].

The escape rate is usually given by an expression of the form

t See, for example, Fulton and Dunkelberger [1974], Naor, Tesche, and Ketchen [1982], Danchi et al.

[1984], Silvestrini et al., [1988], and Silvestrini, Liengme, and Gray [1988].

See Kramers [1940]. Ambegaokar and Halperin [19691, P.A. Lee [1971], J. Kurkijlrvi [1972], Bilttiker,

Harris and Landauer [19811 and Barone, Cristimo, and Silvestrini [1985].



49

t

(b)

Fig. 2. 11: Sketch of the two possible mechanism of escape from a well of the
Josephson potential: (a) thermal activation. (b) quantum tunneling

- - -
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0) A F•' ( Ej R , C , T) - k'- rAU2 0 (2.57)

where coA is the resonant frequency of the well, AU is the barrier height, and F accounts

for the effect of damping. For!<< «lc, AU = 2Ej, and 0)A= op = (1/?¶X8EjEc)l/2 . After

the particle is activated out of the potential well, it will keep running downhill, since the

system is underdamped, and the voltage will approach the energy gap value. The measured

critical current Ic will thus be less than Ice, and will have a probabilistic distribution of

values, dependent on the sweep rate. If we assume that F will have a value of order unity,

one expects switching to occur when [lansiti, et al., 1988b]

[ý k BT W (O&,c]
c!E'\ dI-t, (2.58)

where &• / (dl/dt) is the time spent sweeping through the switching distribution. A more

careful analysis by Danchi [1984] gives the same result, apart from small numerical

refinements. Thus Ic depends logarithmically on the current sweep rate.

Because this escape is a probabilistic event, the lc measured in an actual experiment

is different on each current sweep. The distribution of measured Ic values has a

characteristic width &5c, mentioned above, which is proportional to the extent of the

depression of Ic. For the dependences cited above, one finds

2 3(4 I. 1)

Inh ,2.9

(2.59)
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2.6.3 Effect of small quantum fluctuations

As discussed in Section 2.1, if the charging energy becomes significant, we expect

to see quantum fluctuations in 0. The first clear manifestation of this was the

measurement* of the macroscopic quantum tunneling (MQT) of the phase through the

potential barrier of the tilted washboard potential, shown schematically in Fig. 2.11 (b).

This has been studied theoretically by various authors,t and we have already discussed the

tunneling calculation in Section 2.3.2. A formula for the tunneling rate is given by (2.31).

The effect of tunneling on the I-V response of the junction is similar to the effect of thermal

activation: Ic acquires a distribution of values and is less thma Ico.

2.7 Summary

In this chapter we have discussed some powerful theoretical concepts which form

the basis for a description of the Josephson junction. We have developed a model

Hamiltonian for the system, and analyzed its implications in a few well-known situations.

We have thus developed a theoretical basis for the analysis of our observations. After

presenting our experimental techni, -s and results, we will resume the theoretical

discussion in Chapters 5 and 6. 1 his current chapter will then serve as a springboard for

the discussion of the experimentally relevant parameter regime, in which the charging

energy is comparable to or greater than the Josephson energy.

# See den Boer and de Bruyin Ouboter (1980], Prance et al. [1981], Voss and Webb [1981], Jackel el al.

[1981], Washburn et al. [1985], Schwartz et al. (1985], Martinis, Devoret, and Clarke [1985], Devoret,

Martinis, and Clarke [1985].

t See, for example, Caldeira and Leggett [1981; 1983], Chang and Chakravarty [1984], Grabert (1985], and

Hlnggi [1986], and references therein.

BWit
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CHAPTER 3

EXPERIMENTAL TECHNIQUES

This chapter describes the most important experimental tehniques used in the

fabrication and measurement of the properties of the samples. It is divided into two

sections. We begin in Section 3.1, by describing the lithography and deposition methods

involved in the fabrication of the junctions. We continue in Section 3.2 with a description

of the measurement electronics, and a brief account of the low temperature techniques used

in the measurements.

3.1 Fabrication Techniques

The aim of the work reported here was the study of devices whose ratio of charging

to Josephson energy is of order one. This goal created challenging requirements for the

patterning techniques used in the fabrication of the junctions. The Josephson energy EJ is

given at low temperatures in an ideal junction by the expression Ej=(h/8e2)(A/Rn). The

charging energy Ec is given by e2/2C. We assume that

d

A e
C = eoer and R, (const )1 A (3.1)

where A is the area of the device, d is the insulating barrier thickness, and do is a constant

of order IA. We can then express the charging energy as a function of the junction area

and thickness. Assuming a relative dielectric constana , -• 6,* we reach the following

estimate:

See Wang and Gailey [1978], and Danchi [1983]
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where we have assumed a reasonable barrier thickness d -20 A. In order to be able to

measure charging energy effects, we need Ec/kB at least of order the accessible temperatures,

In order to obtain Ec/kB > 1K we need A < 0.04 (pm)2. To obtain a junction of such small

area, the fabrication of electrodes of width less than one micron is necessary. Since Ej

1/Rn depends exponentially on the barrier thickness d, where Ec depends only linearly, we

can obtain Ec - Ej by adjusting the barrier oxidation time.

This is the first thesis written in this research group which reports studies of thin

film devices of submicron dimensions. The fabrication of submicron size junctions required

the adaptation of a new set of patterning techniques. These were mainly based on electron -

beam lithography, which allows the exposure of very fine lines in organic polymer resists

without incurring the minimum size limitations of photolithography, set by the wavelength

of light.

The first step in the sample fabrication is the patterning and evaporation of pads, to

connect the fine junction features with the large scale leads necessary for the measurements.

Next, the junction fabrication method is similar 'o the "overlap" junction methods developed

at Bell laboratoriest. The method begins with the preparation of a submicron suspended

bridge of resist material. The first junction electrode of Sn is then evaporated at an oblique

angle. After the first electrode is oxidized, the second electrode is evaporated at a different

angle, completing the junction under the bridge of resist. An outline of the fabrication

process is sketched in Fig. 3.1. The details of the fabrication are given below, in Sections

3.1.1, 3.1.2, 3.1.3, and 3.1.4.

I See, for example, Dolan [1977], Dolan et al. [1981], Hu, Jackel, and Howard [1981].

i "
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resist bridge

pads
(a)

substrate

(b)

__(C )

Sn

(e)

junction

Fig. 3.1: Outline of the fabrication process. (a) After having evaporated contact pads, a
suspended bridge of resist is patterned. (b) The bottom electrode of tin is evaporated at
a 45" angle. (c) .The oxide barrier is grown by a dc glow discharge. (d) The tin counter-
electrode is evaporated. (e) The completed sample is shown.



5•

3.1.1 Fabrication of contact pads

The small features nacessary for the construction of submicron junctions arc

patterned with electron beam lithography, which has a characteristically small field of view

(< 100 gtm x 100 gtm). Therefore, larger contact pads are necessary to connect the junction

area to the leads on the dilution refrigerator sample loading slug. The contact pads were

patterned by conventional optical lithography, using a liftoff technique. The essence of the

liftoff technique is sketched in Fig. 3.2. The substrate is first coated with a photosensitive

material known as photoresist (PR) and exposed through a mask made of chrome evaporated

on glass. The photoresist is then developed (the exposed PR is dissolved). Finally metal is

evaporated and the remaining photoresist is removed, defining the desired pattern.

Since the yield of the whole fabrication process is usually low, the best approach is

the parallel patterning and deposition of as many sets of contact pads as possible, to make

sure that a working sample is obtained by the end. After having decided that a two inch

wafer size was convenient given the constraints of the available equipment, we designed a

mask that would fit sixteen sets of pads in a 1" x I" square in the center of the wafer. Each

set of pads was 1/4" x 1/4", to conveniently fit on the sample loading slug of the dilution

refrigerator. A sketch of the pad pattern is shown in Fig. 3.3. The mask was made by

Advance Reproductions, Inc., located in Willows Industrial Park, 100 Flagship Drive,

North Andover, MA 01845.

Because the minimum linewidth on the pad mask was as large as 20 gtm, this part of

the process is not particularly difficult. Two specific techniques have been used with

success: a fast but sometimes unreliable one-layer technique involving a chlorobenzene

soak, and the more time consuming but reliable three layer photoresist - aluminum -

photoresist (PR-Al-PR) technique. Since the latter is described in detail in Danchi's thesis

[Danchi, 1983], we will not dwell on it here. For the chlorobenzene technique, oxidized Si

Lb
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_____,,_______,.____-____-_____,,,- photoresist

(a) _substrate

44444444 1Near UV light

(b) _ _ _Mask

(d) • Metal

Fig. 3.2: Outline of the liftoff process. (a) The photoresist is spun on the substrate.
(b) The coated substrate is exposed with near UV light through a chrome-on-glass mask.
(c) The photoresist is developed. (d) Metal is evaporated. (e) The photoresist is dissolved
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wafers are first cleaned* and coated with about 1 gm of Shipley photoresist (AZ 1400-27,

spun at - 4000 rpm), and baked at 700 for 20 minutes. After cooling off for at least ten

minutes, the wafers are exposed wit'i the Karl Suss mask aligner in the soft contact mode.

Next, the wafers are soaked in new chlorobenzene for 10 minutes. The wafers are then

developed in a 1:5 solution of AZ 351 developer and water, for 5 to 10 minutes. The wafers

are mounted in an evaporator, and coated with 50 A of Cr followed by 400 A of Au.t

Finally, the liftoff is completed by soaking the samples in acetone. The pads are now ready

to be cleaned and coated with the resist for the next step of the fabrication process.

3.1.2 Electron-beam lithography: general concepts

Electron-beam lithography is the exposure of patterns in an organic resist material by

means of a narrowly focused beam of electrons. By using different accelerating voltages,

resist materials and substrates, different characteristic linewidths and resist profiles are

achievable.1

Polymethylmethacrylate (PMMA) is the most commonly used resist in electron-

beam lithography. PMMA, like most radiation-sensitive resists, is a polymer consisting of

a long linear chain, the 'backbone", attached to a aumber of sidegroups. PMMA is

dissolved in a suitable solvent (such as chlorobenzene,) spun on the substrate, and baked.

The solvent evaporates, and the PMMA goes from being a solution of neatly separated

* The cleaning process was as follows: Heat for 5 minutes on hot plate in a 1:2 solution of photoresist

stripper and water. Transfer mixture to ultasonic cleaner for 10 minutes. Rinse in running 18 M12 water for

15 minutes. Immerse for 10 minutes, respectively, in trichloroethylene, acetone, and methanol, and agitate

with the ultrasonic cleaner.

t It is essential to fill the liquid nitrogen cold trap of a diffusion-pumped evaporator, even for this simple

process, to avoid contaminating the wafers with pump oil.

SFor a complete reference, please see Wittels [1980.]
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molecules, to a tangled web of polymers forming a mat which uniformly covers the

substrate. The resist is then exposed with an electron-beam, which attacks the sidegroups,

and severs them from the backbone.# These sidegroups are easily removed, leaving behind

a highly porous mass which the developer can infiltrate to dissolve the main body of the

resist. The unexposed PMMA lacks t&e porosity, and the action of the developer is much

slower. Developers usually consist of two ingredients. The first is the solvent, and the

faster it can infiltrate the PMMA mass, the faster it will dissolve it; as a good rule of thumb,

the higher the molecular weight of the solvent, the slower the diffusion, and the longer the

development process. The second ingredient is a nonsolvent which affects the rate at which

the PMMA goes from a gel to a liquid, by adjusting the enthalpy of the solution.

The interaction of these various processes gives rise to a value of "critical dose" D,.

If the dose received by the resist is greater than Dc, the resist will be dissolved by the

developer. In electron-beam lithography, dosage is usually given in units of charge/area; in

our system, a typical dose (with a lOkV electron-beam) is in the neighborhood of 10

pC/(gm) 2. It is possible to increase the sensitivity (or decrease Dc) of PMMA, by changing

its molecular weight and by copolymerization with methacrylic acid [Wittels, 1980]

A sketch of the exposure process is shown in Fig. 3.4. The ultimate resolution of

PMMA is the size of the basic molecule, being of order a 50 A (depending on the molecular

weight.) Apart from the size of the resist molecule (very small by our standards) other

factors can strongly influence the width of the exposed pattern: the width of the focused

beam of electrons, and the forward and back scattering of electrons. As the electrons travel

through the resist, they scatter against the resist molecules, broadening the size of the beam.

Moreover, once the electrons reach the substrate, they scatter back into the resist, interacting

with the resist molecules, and broadening the exposed area. These two phenomena are

# If the PMMA is overexposed, on the other hand, the polymer units crossfink in an essentially insoluble

mat.

I,.,i

' • "2"
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electron
beam

resistraitr a scattering\

Fig 3.4: Sketch of the electron beam exposure process, including forward and
backscattering effects. A realistic simulation of the phenomenon is shown in
Wittels [Fig. 1.15,1980].
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known as "forward scattering" and "backscattering", respectively. The two broadening

processes are sometimes modeled as giving rise to two concentric Gaussian distributions of

beam current intensity [Wittels, 1980]

J(r) (,,,a2e- ar + b e

where 1/a and 1/i are the characteristic widths of the forward and back scattered electron

beam components. The dose at any poinL is then given by multiplying (3.3) by the exposure

time. The upshot is that the dose received by the resist molecules will vary with depth and

with the voltage of the electron-beam: If the voltage is high, there will be less forward

scattering, and the electrons will penetrate further into the substrate before backscattering.

Therefore, the backscattered electrons will be spread out over a wide area, and might not

contribute much to the dosage received by the resist molecules. A high beam voltage will

tend to minimize the exposed width, and give rise to a relatively vertical resist profile. If the

voltage is low, on the other hand, forward scattering will broaden out the beam, and

backscattered electrons will be restricted to a smaller radius, and thus effectively contribute

to the dose received by the resist. Therefore the linewidth will broaden, but the resist profile

will have a much more pronounced "undercut", i.e. the exposed line will be broader at the

bottom than at the top.

3.1.3 Electron-beam lithography: junction patterning procedures

The fabrication of an overlap junction requires the patterning of an overhanging

bridge of resist (as shown above in Fig 3.1.): A line is exposed in the resist, leaving a small

gap in the middle. If the undercut is large enough, and the gap small enough, the resist will

be exposed through the gap region in the lower resist layers, but not in the top layers. This

will leave a bridge of resist after development (see Fig 3.5). The successful fabrication• of

.I.
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Y submicron overlap junctions thus requires the capability to pattern lines of submicron width

while at the same time obtaining the large undercut necessary foi the resist bridge. We

chose to solve this problem by using a low beam voltage (10 kV) to maximize the effect of

tI ackscattering to create an undercut. We also used a two layer resist scheme, with a thin

layer of PMMA on top and a thick bottom layer of the more sensitive PMMA/MAA

(polymethylmethacrylate/methacrylic acid), to further enhance the undercut profile. The

idea is that a gaussian beam of electrons will expose a narrower hole in the less sensitive top

layer than in the more sensitive bottom layer, creating the desired strongly undercut profile.

Furthermore, we used very low exposure currents, to minimize the number of resist

molecules at the top of the resist structure to receive the critical dose, and to lengthen the

development time. The long development time, (- 10 minutes,) allowed the close

monitoring of the sample under an optical microscope; the development was stopped as soon

as the sample appeared completely developed, and before the exposed lines could be

broadened by overdevelopment.

The process begins by cleaning the newly prepared contact pads (patterned in a 16 x

16 array on a 2" wafer) by immersing them 10 minutes each in TCE, acetone, and

methanol, in the ultrasonic cleaner. Next, the bottom resist layer is spun. This lA, er is

chosen to enhance the undercut, and ease the liftoff process. Therefore, it must be

composed of a very sensitive resist, and it must be thick enough, for the deposited metal to

lift off without tearing at the edgest. The bottom layer is thus composed of PMMA/MAA,

(available in beads from Esschem, dissolved 0.12 g/ml in glacial acetic acid) and is spun at a

very slow speed, 2000 or 3000 rpm, giving rise to a resist thickness of about 0.4 - 0.6 gtm.

The wafers are then baked at 1800 C for one hour. After letting the wafers cool for at least

ten minutes, the second resist layer is spun.

t As a rule of thumb, to avcid tearing, the resist thickness should be at least three times the thickness of

the film.
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The purpose of the top resist layer is to maximize resolution, to obtain the minimum

linewidth. A lets sensitive resist is therefore used, (PMMA of 950 K molecular weight,

dissolved at 6% in a chlorobenzene solution, available from KTI, Inc., 1170 Sonora Ct.,

Sunnyvale CA 94086), and spun on in thin layer of about 0.2pm, at 8000 rpm. The

wafers are again baked at 1800 C for one hour. The wafers are then diced in 1/2" x 1/2"

pieces each containing four sets of pads, to fit in the scanning electron microscope (SEM)

field of view at the lowest magnification, and taken to the SEM for exposure.

The heart of our electron-beam exposure system is a JEOL 35 U scanning electron

.microscope. To control the beam, and scan over the desired patterns, we interfaced an IBM

Instruments 9000 microcomputer to two high-quality sixteen-bit Analogic digital-to-analog

converters, which in turn were attached to the external XY input of the SEM. A set of

machine language routines, written by Dr. H. Rogalla for the 68000 processor of the IBM

Instruments 9000 were used to generate the coordinates for the XY control of the SEM

beam. These were transmitted to the external D/A converters, which in turn transmitted an

analog control signal to the SEM. A sketch of the electronics controlling the scanning

electron microscope used to expose the resist is given in Appendix 1.

The two layer resist stencils were mounted on the SEM stage with silverpaint. With

a beam voltage fixed at 10 kV* , and a beam current of about 5 pA, the focus, astigmatism,

and aperture alignment SEM settings were first optimized while looking at silver-painted

areas. This was necessary since the only large distinguishable features on the wafers were

the Cr-Au pads, which were covered by two layers of resist, and were therefore difficult to

see sharply with the low 10 kV beam voltage. The beam focus was then re-optimized while

looking at dust or a scratch in the resist near the center of the pads. Next, the field of view

* Depending on the age and alignment of the SEM filament. occasionL Ily it was not possible to obtain

enough beaam current at 10 kV to see the contact pads. In this case, die beam voltage was stepped up to I I

or 12 kV.
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Key.

U Exposed pattern

W Tips of contact pads

Fig. 3.6: Sketch of SEM field of view at a magnification of 1000 x, showing the
contact pads and the exposed pattern.

------------ ---
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was aligned with the center of the pads#, as the magnification was increased to 1000 x. The

SEM beam was then blanked off, and control was given over to the IBM 9000 to execute the

exposure of the sample. A typical setting for the exposure time per pixel was about 200 gts.

Fig. 3.6 shows a sketch of the field of view at 1000 x, and of the pattern exposed by the

beam. The width of the gap in the center of the pattern, which defines the location of the

resist bridge was typically 125 pixels.

The samples were developed in a 1:5 mixture of methylisobutylketone (MIBK) and

isopropanol. Typical developing times ranged from five to fifteen minutes. The sample

was closely monitored during this long process, and the development was stopped as soon

as the resist bridge structiure appeared developed under the optical microscope. The resist

stencils were then ready to be mounted in the evaporator.

3.1.4 Evaporation procedures

While the resist stencils can be safely stored for weeks, the completed samples must

be cooled and stored at liquid helium temperatures within six to twelve hours of the

evaporation, to avoid the likely growth of metallic whiskers shorting the oxide barrier. As a

result, the evaporation process must be timed carefully with the planned availability of the

dilution refrigerator, needed to perform the measurements.

The resist stencils were mounted on the tiltable stage of a cryopumped evaporator,

the tilt being adjustable by a control outside the vacuum chamber. The chamber was pumped

down to a pressure below 4 x 10-7 torr. Next, the sample stage was cooled by flowing

liquid nitrogen for at least one hour, which would further cryopump the chamber, and cause

the pressure to drop below 2 x 10-7 torr. The stage was then tilted by an angle of 45" from

normal incidence, and the first electrode was evaporated. In carrying this out, the evaporator

I Usually the slow or even very slow SEM scan settings were necessary to see the pads well enough to

align them.

i
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boat, containing 99.999% pure Sn was heated slowly at a low setting for about five minutes.

Then, tlhv power fed to the boat was gradually increased, until a very high and stable

evaporation rate of about 300 A/see was achieved. The shutter was then opened, to deposit

about 700 - 800 A of Sn to make up the bottom electrode of the junction.

After completing the first evaporation, the chamber was twice flushed with 20 - 40

mtorr of oxygen, 99.99% pure. The oxidation of the bottom electrode was then completed

in a dc oxygen plasma, driven by a source voltage of 1. 1 MV The oxyge.1 pressure was 40

mtorr. The oxidation time varied from 30 seconds to five minutes, depending on the desired

thickness of the barrier. The chamber was again pumped down to below 4 x 10-7 torr.

After changing the stage tilt to about -45', the top electrode of Sn was evaporated, using

warmup times and deposition rates comparable to those of the bottom electrode. The top

electrode was between 1000 and 1200 A thick. If the top electrode was not made thicker

than the bottom electrode, the top electrode would often break near the junction area, on the

edge of the bottom electrode.

After the evaporation was completed, the sample was warmed up slowly.

Typically, it was left to warm up in the chamber for about four hours. After this,

approximately 1 torr of nitrogen exchange gas was bled into the chamber, to accelerate the

final warming stages. After waiting two more hours, the chamber was vented to

atmosphere, and the sample was unloaded. The sample was completed by lifting off the

unwanted tin, by squirting the wafer with acetone. A quick methanol rinse, to wash off the

acetone residue, would complete the sample preparation.

Fig. 3.7 is a scanning electron microscope photograph of P. typical sample. The

active junction area is the overlapping region between the two thin fingers of tin, at the center

of the photograph. The bottom electrode appears fuzzier than the top electrode, since it is

not as thick. Figs. 3.8 and 3.9 are photographs of an array of eleven small tunnel junctions,

fabricated by patterning five overhanging resist bridges in a row. Fig. 3.9 is taken at a low

enough magnification to also show the tips of the contact pads.
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Fig. 3.7: SEM photograph of a previously measured sample with area - O.I(PM) 2, normal

resistance Rn = 34 kL2, and capacitance C - 2 if. The junction is the small overlapping

region between the two "fingers" of tin, in the center of the picture. The photograph was

taken at an angle of 450. The horizontal bar is one g±m long.
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Fig. 3.8: SEM photograph of the eleven-junction array. The horizontal bar is 10 g±m long.
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Fig. 3.9: Close-up of the eleven-junction array. The horizontal bar is 10 gm long.
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3.2 Measurement Techniques

3.2.1 Mounting procedures

The junctions were measured in an Oxford Instruments model 200 dilution

refrigerator. One of the main advantages of this refrigerator is that it has a top-loading

facility. A sketch of the top-loading "slug" is shown in Fig. 3.10. The sample was

mounted on the slug, and the leads were attached to the pads by pressed indium dots. The

slug is attached to the refrigerator by screwing it into the bottom part of a copper tail that is

thermally anchored to the mixing chamber. Eleczical contact to the sample is made by

means of the eight slip-rings. To load the slug, some liquid helium is first syphoned from

the main bath of the dilution refrigerator to precool it. The slug is then quickly loaded in

place, and can be cooled down to millikelvin temperatures in a few hours.

3.2.2 Aeasurement set-up

A sketch of the measurement set-up is shown n Figs. 3.11 and 3.12. The samples

were isolated from the environment by RLC filtering composed of 5 kQ cold resistors,

mounted on the top loading slug and the extensive distributed inductance and capacitance of

the leads. The leads were were composed of 40 gauge insulated Cu wire arranged in

ribbons. The lead capacitance was measured to be about 1 nF. In several locations, the

leads were tightly wrapped on solenoidal heat-sinking posts, which are believed to add

significantly to their inductance. The measured cutoff frequency of the leads was below

1kHz. The addition of Murata-ERIE rf low pass filters was found to add unwanted

resonances in the leads, and better performance was obtained by the distributed RLC

filtering. By using an audio-frequency spectrum analyzer, the measurement set-up was

extensively tested for low frequency noise, and great effort was spent to minimize its

contribution. The dilution refrigerator and measurement apparatus were enclosed in an

- .t, .Tari.q•,
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Fig. 3. 10: Sketch of
the top-loading slug.
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electrically screened room, to minimize rf pick-up. Several more layers of shielding were

provided by the various copper heat shields of the dilution refrigerator set-up (see Figs.

3.11 and 3.12).

To minimize the extrinsic noise fed into the sample by the measurement set-up, the

latter was kept very simple. For the I-V curve measurements, we relied on a simple

current source, composed of a dry battery whose voltage was adjusted by a variable voltage

divider, and a 500 MQ current-limiting resistor. The voltage signal was amplified with a

Princeton Applied Research PAR 113 preamplifier and fed into the Y inpuz of an analog

Hewlett Packard XY recorder. The current fed into t.ýe sample was measured by taking the

voltage across a precision series resistor and, after it was amplified with another PAR 113,

the signal was fed ito the X input of the XY recorder. One of the two sample current

leads was grounded at the current source. Care was taken to avoid ground loops in the

measurement setup, and shielded twisted pair (Belden triax) cable was used in all

connections to the sample. Using a 500 MUl limiting resistor and a 1 MQ measuring

resistor, we were able to produce and measure currents of a few pico amperes.

A more complex computer-controlled set-up was also built, and used successfully

for preliminary measurements in a conventional liquid helium pumped rig. A schematic of

the computer-controlled current source, which has also been used by others, is given in

Appendix 2. Its low frequency noise performance, however, was inferior to that of the

simple setup described above, and it was not used for the most delicate low temperature

measurements described in this report.

The dV/dI measurements were made using a PAR 124 lock-in amplifier, and a

home-built voltage-current coaverter and level-shifter. The good noise performance of this

set-up allowed, tde reasurement of dV/dJ vs I curves with excitation currents as small as 5

pA, using averaging time constants below I sec.

2a
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3.2.3 Low temperature considerations

The temperature of the mixing chamber was measured by -means of calibrated

resistors. Between 4 K and 250 mK we used a factory-calibrated germanium resistance

thermometer (GRT) obtained from Lake Shore Cryotronics. Below 250 mK we used

Speer carbon resistors, which were milled on one side to provide a flat surface, and

pressed against the mixing chamber surface, using cigarette paper to provide a layer of

electrical insulation. The carbon resistors were calibrated in situ in each cool-down using a

National Bureau of Standards fixed point thermometer, consisting of five different

superconductors of known transition temperatures between 250 mK and 20 inK.

To ensure that the temperature of the mixing chamber is indeed a reasonable guess

for the sample temperature, we must examine some heat sinking considerations.* There are

two primary contributions to the heat-sinking of the junction: heat-sinking through the

leads and through the substrate. In considering the first term, the bottleneck in the heat

transfer process is given by the thin and narrow superconducting leads in the iminediate

proximity of the junction. For the sake of an order of magnitude estimate, we assume that

this bottleneck is a tin wire of diameter 0.2 pim, and length 10 pm. At temperatures below

0.5 K, the thermal conductivity of tin is primarily due to phonon contributions, and is

proportional to V3. A reasonable value [Lounasmaa, 1974] at 0.3 K is 10 W/Kcm. If we

multiply this value by the cross-section of the wire, and divide by the lenigth, we obtain the

maximum power allowed through the sample, to maintain a given temperature. error to be of

order 4 x 10- 10 W for an error of I K. Since the conductivity is proportional to T3, at 30

mK this value is reduced to 4 x 10-13 W/K. Therefore, if we can tolerate a maximum

temperature error or 2 inK, we can feed a max'imuni of about one fW to the junction. To

measure a critical current of order 200 pA, given that the sample has a low current

resistance R0.- 10 kW, the power fed to the sample is of order 0.5 tW The heat sinking of

*Good references arm Lounasmaa (1974] and Richardson and Smith (1988].
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the junction through the leads should thus be effc-tive, and the temperature of the sample

should be within a few mK of the temperature of the mixing chamber.

A good approximation [Richardson and Smith, 1988] for the thermal boundary

resistance from a metallic to an insulating medium is 30 f-3 (K4cm2/W). At 0.3 K, for a

0.2 gtm x 0.2 gm interface cross-section, the approximate area of the junction, the

maximum power allowed for a given temperature error is thus of order 4 x 10-11 W/K,

which is about a factor of ten worse than the estimate due to the lead contribution. It thus

appears that the leads are a better heat-sinking mechanism than the substrate. Naturally,

however, the two mechanisms interact with each other, and the heat can be carried off part

way though the leads and part way through the substrate. Tle conclusion is this: if we

only feed a power of order I femtowatt to the junction in order to measure its properties,

we should be relatively safe in trusting the readings of the thermometers on the mixing

chamber. This is confirrned by the sharp temperature dependence of our measuremelnts,

reported in Chapter 4, all the way down to below 20 nK. The only exception are the

measurements on the eleven junction linear array, in which the five highly resistive

junctions (with thick oxide barriers) on each side of the measured device are likely to render

the heat sinking much less effective.

k
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CHAPTER 4

EXPERIMENTAL RESULTS

This chapter describes our experimental results. We performed measurements on a

total of eleven samples: five single-junction samples, five two-junction linear arrays, and

one eleven-junction linear array. Sample parameters are given in Table 4.1. We have

divided the presentation of the results into four sections. We first describe, in Section 4.1,

the most basic results from I-V curve measurements performed on the junctions at zero

magnetic field; here we present a number of striking observations, such as a reentrant

critical current temperature dependence, and a significant resistive region (with R =Ro) at I

< Ic. In Section 4.2 we discuss the effe -t of applying a magnetic field to the junctions: the

field dependence of Ic and Ro, the appeanance of a novel regime in which features of the

Coulomb blockade and Josephson tunneling coexist, and the high field region in which

superconductivity is destroyed. Section 4.3 completes the presentation of results with a

discussion of the measurements performed on the eleven-junction array. Section 4.4 ends

the chapter by summarizing the experimental results, setting the stage for the discussion to

be given in Chapters 5 and 6.

4.1 Basic Junction Characterization

This section is the core of this report. Here we discuss the most basic properties of

our small devices, and begin to differentiate them from conventional low capacitance

Josephson junctions.

4.1.1 Current-voltage characteristics

We begin the presentation of our experimental revu Its with a typical plot, shown in

Fig. 4.1, of the low temperature I-V characteristics for a junction with Rn 2'40 kW. The
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Fig. 4.1: Low temperature I-V characteristics of the sample with Rx = 140 kaJ
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characteristics are those of a high quality junction, with very sharp gap structure, and very

low leakage current. Values for the low temperature subgap leakage resistance RL are

given in Table 4. 1.

While the sharp characteristics might remind us of a good conventional tunnel

junction, such as we described in Chapter 2, a closer look at the INV curve already reveals

some unusua! phenomena. First of all, the value of the energy gap Vg~ measured from the

IN curve [Vg - 1.3 mVJ appears too high for a junction with tin electrodes. Since the

measured Tc of this device was about 3.75 K, a good value for Sni, we would expect from

Bardeen-Cooper-Schrieffer theory to have a gap value 24.Ie - 1.764 kTcle - 1.16 mV. At

the same time, the linear high voltage part of the INV curve does not extrapolate back to the

origin. The vertical offset i'q about lO0,pV, as can be determined with good accuracy by

looking at the INV curve on different scales. This vertical offset of the extrapolated liiie at

the origin matches approximately with the gap estimate discrepancy. It is also in good

agreement (± 20%) with the value of e/2C for this device. 1 Our interpretation is that we

are witnessing the effect of the Coulomb blockade, indicated schematically in Fig. 1.2 (c),

described in Chapters 1 and 2. The theme of this work is already apparent. While our

devices share many characteristics with conventional Josephson junctions, a number of

striking novel phenomena can be observed, which we attribute to the effect of a large

charging energy Ec.

Fig. 4.2 is another plot of the INV characteristics of the junction with Rn = 140 kaZ

also taken at T = 20 inK. The scale is more sensitive, and the critical currents and low

current resistance R0 (notice the top plot on the expanded voltage scale) can be accurately

read off. This plot is similar to Fig. 1.3, an INV curve of a junction with Rn = 70 W,

already described in Chapter 1. The estimated value of x=EclE, fo:' this sample is about 6.

The features of this curve, such as a l'arge hysteresis and a signifli-ant R0, are typical for the

IThe value of C is given by the intrinsic capacitance Ci, estimated as described below, in Section 4.1.4.
I

Al
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I(pA)
Fig. 4.2: I-V curve of a sample with R. = 140 kW2 and estimated capacitance C - I fF,
taken at T = 20 mK and H = 0, showing definitions of 1C Ir, Ro, and RL. The two plots
have the same horizontal scale but different vertical scales.
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low temperature behavior of the high resistance, low capacitance junctions reported in this

work. Similar I-V curves were also observed by Ono, et al. [1987].

4.1.2 The junction critical currents

The I-V curve in Fig. 4.2 displays two different measurable critical currents, 1, and

Ir. 1c is the maximum current that can be carried before the jump into the high voltage

regime. Ir, the recapture critical current, is the current at which the system returns to the

low voltage state. The familiar "zero voltage state" is not found in this type of junction.

The behavior of the system is always observably dissipative, and can be characterized by

the resistances described below. Our definitions of critical currents are thus modified from

the standard ones and are motivated by the need to describe our observations. Our

interpretation of these critical currents is developed in the remainder of this report. At

higher temperatures, the measured I-V curves were not found to be h. steretic. In this case

Ic = 4, and we define the measured critical current to be the V=0 extrapolation of the

increasing current branch of the I-V curve below the gap voltage.

In an ideal device, neglecting fluctuations, le is given by the value 1co related to Ej

by Ej=JIco/2e, where 'co monotonically increases with decreasing temperature, as

described in Chapter 2. In Fig. 4.3, we display the temperature dependence of Ic and Ir for

the junction with 140 kfl normal resistance. Note the remaikable temperature dependence

of Jc, first rising, then dropping by a factor of ten, then rising again by a similar factor as T

is reduced. This is very different from the monotonic rise of Ico(T). Moreover, the

measured value (Ic - 0.36 nA) at low temperatures is much less than the theoretical

Ico(T=O) - 7 nA. The inset in Fig. 4.3 is an enlargement of the low temperature region: the

temperature dependence of 'c is very sharp down to the low millikelvin region, where it

appears to flatten off a bit. Another important observation is that the plotted Ic values are

averages over a very narrow distribution of switching currents measured on repeated

ev. ,

2 "
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Fig. 4.3" 1c vs. T for the sample with Rn = 140 kM The inset focuses on the low
temperature measurements.
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sweeps, with width A/c of only - 0.05 Ic - 0.003 'co. Note that Ic=lr for T/Tc > 0.5,

where the I-V curve is not hysteretic.

In Fig. 4.4, we display the temperature dependence of c for a number of different

samples. The striking nonmonotonic behavior sets in as the sample resistance becomes of

the order of 10 k12 Our lowest resistance junctions exhibit a monotonic temperature

dependence. Moreover, the measured critical current depression is not as marked as in the

high resistance samples, and can be accounted for quite well by conventional premature

switching arguments. It appears clear from Fig. 4.4 that the trend of the results presented

here is not dependent on the sample configuration. Some of the lf(T) curves plotted in Fig.

4.4 are from single junction samples, while others are the lowest le measured in a two

junction sample: the general results from these two families of samples seem quite

mutually consistent.

4.1.3 The junction resistances

The behavior of our smallest devices always appears dissipative; to describe it, we

discuss three directly measurable resistanct, values. Using the sample in Fig. 4.2 as an

example, we have the normal state resistance Rn- 140 kQ, the low voltage resistance Re

(which ranges from 140 kD2 near the transition temperature Tc down to -6 k2 as T--0O),

and the subgap leakage resistance RL (ranging from 140 kD2 at Tc up to 40 MD as T---O).

The latter is defined by the slope of the quasilinear part of the decrease in V from the gap

voltage, measured on an expanded current scale.

In Fig. 4.5, we display the temperature dependence of Re(T), for this sample with

Rn =140 kM. Ro is large at all temperatures: as T is reduced below Tc, where Re = Rn, Re

drops, slowly at first, and then more sharply below 0.5 K, apparendy flattening out at the

lowest temperatures. The inset shows the low temperature region. Fig. 4.6 is a plot of Re

vs. T for a number of different samples. While for low resistance samples Re soon

becomes immeasurably small below To, resembling the behavior of conventional devices,
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as Rn becomes of the order of 10 kA2, the behavior changes, and Ro is significant over the

whole temperature range.

Fig. 4.7 show's a plot of the measured RL vs T for a typical sample. For our

samples, the leakage resistance is found to be well approximated by a shunt combination

of a thermaly excited quasiparticle term ~RneA'c and a residual conductance at T=O.

R.I(T) RL'(O) + R(-le-"T '4.1)

In all measured samples, the oxide barriers were found to be of very high quality, with

R.(O) - 100 - 10,000 Rn. The measured low temperature leakage resistance RL(O) is

plotted in Fig. 4.8 as a function of Rn. The trend is for RL(O) to be roughly proportional to

Rn2, as discussed further in Chapter 5.

4.1.4 Junction "intrinsic" capacitance

An important part of our analysis is the estimation of the intrinsic capacitance of the

junction. The intrinsic capacitance Ci cannot be directly extracted from I-V curve

measurements. It is defined in this context as the capacitance due only to the parallel plate

gevretry of the superconducting electrodes separated by the oxide barrier through which the

tunneling occurs, anC, is thus given by Ci = eeA/d, A is the junction area, obtained from

scanning electron microscope photographs. To complete the estimate, we use a dielectric

constant e,- 6 typicall of SnOx barriers grown by glo N discharge, and a ;)arrier thickness d

-25 ± 5 A, which is quite reasonable for our junctions, given their very low current density

(and thick barriers). Table 4.1 contains a list of sample capacitance estimates. In general,

the intrinsic capacitanc- is not necessarily an accurate estimate of the capacitance of a device,

since parasitic contributions may be important. In our case, it appears that Ci agrees rather

I SeeWang and Galley (19781, and Danchi [1982].

&.•
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weilT with capacitance estimates extracted from fits with our theoretical models. An example

is given above in Section 4.1.1; many more. examples will follow. In the following

chapters, unless wc specify otherwise, we use C. as the estimate for the total capacitance of

the device.

4.2 Measuremerts in a Magnetic Field

Applying a magnetic field H to the sample reduces the Josephson coupling between

the electrodes by phase modulation and by reducing the energy gap, both leading to a

smaller effective Ep. By increasing H we can thus conveniently change the ratio x = EC/Ej

in situ, which profoundly affects the behavior of the Josephson system, as described in

Chapter 2. The effects of this field modulation at low and moderate fields are described in

Sections 4.2.1 and 4.2.2. In Section 4.2.3, we describe a more extreme field regime, in

which H is apparently large enough to destroy the superconductivity in the tin junction

electrodes.

4.2.1 Field dependence of le and Ro

A typical low temperature 1c vs H curve is shown in Fig. 4.9. In almost all our

junctions, the magnetic field monotonically reduced 1. We ascribe this absence of the ideal

sin xix dependence to the non-uniformity of the device. Since part of the junction area is

on the edge of the electrode and part on top, the field orientation is different in different

parts of the device. Moreover, in a junction of this sort, fabricated using very long

oxidation times, we expect the distribution or the current through the barrier to be

nonunmform.

t the agreement is usually within 20 or 30 %, whict1 roughly corresponds to the error in estimating Ci.
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Fig. 4.9: Ic vs. H for the sample with RA= 140 kfJ. The critical currents are normalized to
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As we show in Chapters 5 and 6, the relationship between 1c and El in the large x

regime is not the simple 1c f (2011) EI, valid in the classical approximation at zero

temperature. A new expression is derived there which establishes the proportionality of

lc(T=O) to EJ2 , forx >> 1. A brief discussion is also given there of the likely dependence

of It on temperature. In all cases Ic appears dependent on the extent to which the phase

wavefunction is "bound" to the Josephson potential, and decreases as the height of the

potential barrier decreases. We thus assume that a monotonic relation exists between lc

and Ej in all regimes of a Josephson junction, including the large x regime. Therefore, an

applied H can be used as a very powerful tool to change the barrier height of the Josephson

potential.*

The inset of Fig. 4.3 is an enlargement of the low temperature section of Ic(T),

which appears to flatten out below T - S0 inK. A similar behavior is observed in the low-

T measurements of Ro, shown in the inset of Fig. 4,5. Three possible reasons for this

behavior come to mind: A significant extrinsic noise contribution could be adding a fixed

additional noise temperature. The sample heat sinking could be imperfect, causing a

fictitious sample temperature above the mixing chamber temperature measured by the

thermometers. Finally, quantum fluctuations could be dominating the response of the

sample at low temperatures.

Fig. 4.10 shows the low temperature critical current plotted as a function of T, for

three moderate magnetic field values. Fig. 4.11 shows R. at low temperatures, for

different values of H. Apparently, the shape of the curves is field dependent, and the low

temperature flat section seems to disappear as the field is increased. This would exclude

the first explanation (at least in its simplest form), since a sharp temperature response can

be obtained down to 20 inK, in the H = 1.3 kG plot. The second explanation also seems to

* A magnetic field has beo used in a similar fashion by a number of groups including Devoret, Martinis,

and Clarke [19851, for MQT experiments, and Hu. Lobb, and Tinkham 11987], for chaos measurements.
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Fig. 4. 10: Low temperature I vs. T, for different values of H, for the sample with R=
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•,i be inappropriate, for the following reasons: The power fed into the sample to measure Ro

or Ic is essentially constant.# As a result, imperfect sample heat sinking would also

apparently add an additional temperature to the sample, independent of H. This is

incompatible to the measurements performed at 13 kG.

Ilhe rempining explanation attributes the low temperature flattening of Ro and Ic to

quantum fluctuations. The semiclassical underdamped limit iesult is, roughly speaking,

for quantum fluctuations to contribute an effective temperature of Tcross = *op/(2xrkB),

which for this sample (see Table 4.1) would be about 150 mK, at H=O. Moreover, since

Sop is proportional to Ej"12, Tcross would decrease as the field is increased. Given that a

semiclassical result should not be trusted in the high x regime appropriate for this sample (x

- 6), a quantitative comparison is inappropriate. However, the qualitative agreement

between semiclassical estimates and our observations seem to support the theory that the

relatively flat low T dependence of Ic and Ro is due to quantum fluctuations. Even better

agreement is given by our very rough theory for Ic (appropriate for large x) based on a

charge space model, given at the end of Chapter 6. In this theory, T - Ej/kB -150 mK (at

H=O) sets the scale for the temperature by which Ic is to be substantially reduced.

4.2.2 Coexistence of Josephson tunneling and Coulomb blockade

If we increase the magnetic field applied to the sample, we observe a very striking

new regime. Fig. 4.12 shows a sequence of I-V curves taken on the sample with 140 kU

normal resistance, at different values of H. While at low fields the observed I-V curves are

only moderately resistive at I < 1c, as described in Section 4.1, beyond a critical field Ht (-

# For the case of Ie, it has been empirically established by us that as the critical current decreases, Ro

increases roughly proportionally to the square root of the current, keeping the power fed to the sample at I =

4c approximately constant. At low currents, the I-V curve is linear, so that the measurement of Ro is

independent of the power fed into the sample.
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0.16 T, in Fig, 4.12) the whole character of the INV curve changes. The response now

becomes highly resistive at low currents (with dynamic resistance of order RD), rising to a

plateau at V a Vb. Thereafter, the voltage rises on a ramp with slope R - 106 D2, from

which it sharply jumps to the gap voltage Vg at a current we identify as Ic. This

characteristic behavior is observed until H is equal to a second threshold field H,2 (about

0.32 T for the sample in Fig. 4.12) beyond which the critical current is reduced to zero,

and the "bump" on the I-V curve is no longer visible. Once the novel behavior sets in,

between Ht and Ht2 , the value of Vb is found to be insensitive to magnetic field and

temperature. This is shown, for example, in Fig. 4.13: the I-V curves, taken at the

intermediate field of 0.13 tesla as a function of temperature, undergo a transition similar to

that shown in Fig. 4.11 as a function of field. Apart from rounding, the value of Vb is the

same in all cases.

By reducing the Josephson coupling energy with magnetic field or temperature, we

can thus induce a striking transitinn in the shape of the I-V curve. The new curves are

highly resistive at low currents, queWlitatively reminiscent of the Coulomb blockade effect

mentioned in the introduction. Morcover, as shown in Fig. 4.14, to the precision with

which Ci is known, the measured Vb corresponds to e/2C4 in all measured samples, where

Ci is the intrinsic capacitance. In this novel regime, features typical of the Coulomb

blockade, such as the knee at V- -/2C, coexik. with a sharp voltage jump at a current

reminiscent of the Josephson critical current Ic.

Fig. 4.15 shows a plot of the threshold fields Ht and Ht2 vs temperature for a

different sampie, with Rn = 14.8 k12 As the temperature is increased, Ej decreases* , and

the value of applied field required to reduce the Josephson energy to the threshold level

(H,), also decreases.

At these fields, the transition ternperrture of the sample is as low as 1.4 K, so that between 50 mK and

1K the value of Ej changes ccnsiderbly.

,-.. -. I
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Fig. 4.14: Measured blockade voltage Vas a function of junction area. The three
measured samples (from left to right) had Rn - 140, 35, and 14.8 kQ. The curves
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Fig. 4.15: Threshold fields NIand H,2 (defined in the text) vs. T.
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4.2.3 Normal - insulator - normal junction regime

If the field is increased beyond the critical field of the tin electrodes, the device

becomes a normal - insulator - normal tunnel junction. The effect of charging energy can

then be studied without the added complications of superconductivity. We find however,

that the high magnetic fields necessary to destroy the superconductivity also app..ar to affect

the I-V curve of the device, adding new complications to the problem.

The field is applied to the junctions in a direction parallel to the plane of the

electrodes. In a thin superconducting film, the parallel critical field Hc ii is given by

H.id=2 - (4.1)

where d is the film thickness, and X is the penetration depth at zero field. For a thin film,

the parallel critical field can thus be considerably larger than He. For our samples, we

found Hc 11 between 0.3 and 0.7 tesla which, combined with a typical d of about 700 A,

gives us A, in the neighborhood of 2000 A, assuming a tin bulk critical field Hc = 305 G.

Fig.4.16 is a plot of the gap voltage VS as a function of magnetic field for a sample

with Rn equal to 8.3 kll. V. is at first strongly dependent on H, as appropriate for the

dependence of the superconducting energy gap, but bottoms out at higher fields to a

constant value. We attribute this to the effect of the Coulomb blockade; we interpret the

remnant gap on the I-V curve as corresponding to eI2C, with C corresponding to Ci

(within 20- 50%) for all our m-easured samples. An I-V curve of a device in this regime,

showing the remnant gap, was shown in Fig. 1.5.

I This data was taken by A. T. Johnson.
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Fig. 4.16: Gap voltage VS vs. H, for the sample withR 8 = 8.3 ka
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Even though the magnitude of the remnant gap agrees with that expected from

charging effects, the shape of the [-V curve is a bit washed out, when compared to the I

V2 ideal [Averin and Likharev, 19861 Coulomb blockade dependence. Moreover, if the

magnetic field is ir,'reased further the effect of the Coulomb blockade eventually becomes

even less marked, as shown in Fig, 4.17. We believe that the Coulomb blockade is

rendered less effective by level broadening by spin alignment energies in the presence of

spin-orbit scattering processes.

To find the level broadening, we need to estimatet the dephasing time To due to the

spin-orbit scattering process. The dephasing time can be defined as the amount of time

elapsed for the phase to change by a significant amount, say x. The energy broadening AE

is then simply ~ The energy difference between the two spin-flipped states is 2peH.

The average time between spin-flin events is the spin-orbit scattering time Tso. The amount

of phase deviation between spin-flips will then be (2BH/lf) Tso. The number of flips made

for a length of time equal to the dephasing time is, on the average, TO/Iso. If we assume

that the flip process is random, the total net phase deviation will be given by the phase

deviation per flip times the square root of the number of flips. Since in one dephasing

time, the net phase deviation accomplished is by definition 7c, we can write

so (4.2)

so that we can solve for ro and estimate

X,- OUBH 2•-k "
AE f (4.3)

t M. Tinkham, private communication.

i 4
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If this energy width becomes comparable to the charging energy, we would expect the

effect of the Coulomb blockade to be washed out. At H - 2 T, the field scale on which the

dV/dI vs. V peak is flattening out in Fig. 4.17, paH is 1.5 K. A typical value of rso for

Sn is - 10-12 sec [see Van Haesendonck, 1985]. Therefore, at 2 T, AE - 0.8 K, which

is indeed very close to the charging energy (Ec - 0.9 K) for the sample with Rn = 140 kn.

4.3 Measurement of Eleven-Junction Array

As we discuss further in the next chapter, one of our most puzzling observations is

that the capacitance of one of our junctions does not seem tr be strongly affected by the

large parasitic capacitance of the leads. To investigate tne effect of the leads on the

behavior of our junctions, we fabricated - sample consisting of eleven junctions in series.

If the leads strongly affect the dynamics of our devices, then the behavior of the smallest

junction (fabricated in the center of the array), should be qualitatively different from the

behavior of our single and double junction samples, described above.

A typical low temperatue I-V curve of the eleven junction array is shown in Fig.

4.18, taken at T = 50 ruK. The return branch of the I-V curve shows eleven small

plateaus, the evidence of eleven gap voltage jumps. On the other branch, all junctions

appear to switch simultaneously: apparently the switching of the junction with the smallest

Ic triggers switching in all ?he other junctions as well. The behavior of the array is similar

to that of single and double junction samples: The critical current is considerably reduced

below the Ambegaokar Baratoff value lco at low temperature, and the I-V curve is resistive

at all currents. A lot of effort was spent searching for a region of negative resistance at

low currents, which has been predicted by various authors [sew for example, Likharev and

Zorin, 1985]. As in the single and double junction samples, no such region was detected.

. :.. • .. . ,-
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Fig. 4.19 is a plot of the critical current of the array vs. temperature, the former

definied as the first (smallest) critical current on the INV curve. We interpret the measured

I4 as arising fromn the response of the lowest 4c junction in the array. The qualitative

features of Fig. 4.19 are very similar to those typical of a single junction sample, shown in

F Fig. 4.3. The only qualitative difference is that the flat region at low temperature appears

considerably broader, extending as far as 100 inK.

To investigate the possible reason of this difference we can apply a field to the

sample, much in the same fashion as we did in Section 4.2.1. The results are plotted in

Fig. 4.20. In this case, the application of a field does not affect the width of the flat region,

as is shown especially well in Fig. 4.20(b). Using the same arguments outlined in Section

4.2.1 we believe, in this case, that the flat region is not due to quantum fluctuations, since

reducing the Josephson coupling energy by a magnetic field does not affect its width.

Moreover, we believe that it is not due to extrinsic noise, since the shielding is the same as

in the single junction samples. The heat sinkcing of the smallest junction in the array, on the

other hand, is much worse than in the single junction samples, since its leads include five

other highly resistive tunnel junctions.t Thus, our interpretation is that this time we are

witnessing the effect of heating on the sample.

tWe discussed in Chapter 3 that we believe that the leads .ppear to be the most effective heat sinking

mechanism for the junctions.
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4.4 Summary of Experimental Results

In this chapter we have outlined a number of initially puzzling experimental results.

For some of the results, a brief interpretation has already been provided. The next two

chapters are devoted to the mare complete interpretation of the major results. These are:

1. The existence and magnitude of RO(T).

2. The reentrant temperature dependence of 1, and Ir.

3. The reduction of Ic by an order of magnitude relative to Ico, while

maintaining a narrow switching distribution.

4. The coexistence, at intermediate fields, of features common to the

Coulomb blockade and Josephson tunneling.

In Chapter 5, we attempt to stretch existing classical models to analyze our results. In

Chapter 6, we examine the consequences of a more fully quantum-mechanical picture.

Whereas the classical approach proves most successful in the higher temperature regimes,

the quantum approach is more appropriate at low temperatures.
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CHAPTER 5

DISCUSSION: THE CLASSICAL REGIME

In the next two chapters, we describe an interpretation of the salient features of our

measurements. We begin in this chapter by discussing in Section 5.1 the basic

assumptions underlying our presentation. In Section 5.2, we go on to discuss the failure

of the most standard models, which successfully describe conventional h igh capacitance

Josephson devices. We then present the first part of our interpretation in Section 5.3,

which is an extension of the basic classical RCSJ model described. in Chapter 2. The range

of validity of a classical approach is limited for our samples, since the significant charging

energy of the devices is expected to cause large quantum fluctuations in the phase, as

discussed in Ch 'nter 2. On the other hand, the semiclassical approach provides a very

useful heuristic start for our interpretation, and appears to give semiA-quantitative agreement

above 1 K for our lower resistance samples, in which quantum fluctuations are not

expected to be as large. The second part of our interpretation is given in Chapter b, in

which we discuss a quantum mechanical approach, used in explaining our lower

temperature results.

5. 1. Definition of the Basic Model

This first section is a discussion of the assumptions we make in our interpretation.

It applies equally well to the classical treatment, presented in the remainder of this chapter,

and to the quantum treatment of Chapter 6.

Our basic model is the usual resistively and capacitively shunted Josephson junction

(RCSJ) model discussed in Chapter 2, and shown schematically in Fig. 5. 1. A complete

description of the model involves characterizations of the Josephson coupling channel by a

.7
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Fig. 5. 1: Schematic of the equivalent junction circuit used in the RCSJ model.
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definition of E1 , of the capacitive channel by the definition of C, and of the dissipative

channel by the definition of R(V).

We assume that Ej is given by E1= fdcoi2e, where Io is given by the Ambegaokar-

Baratoff relation [Ambegaokar and Baratoff, 19(2]:

irA Ah 1
S~(5.1)

This formula has been found to give excellent agreement with critical current measurements

on large low resistance (Rn < 5) Sn-SnOx-,r junctions, where thermal and quantum

fluctuation effects are expected to be negligible [Danchi, 1982]. These samples were

fabricated by our research group with the same equipment and techniques as those used in

the fabrication of the small high-resistance samples which are the subject of this study.

We also assume that C can be approximated by the intrinsic capacitance Ci and that

the relevant resistance R(V) is given by RL for II/< M2/e, and by Rn otherwise. While it

may seem surprising that the extensive distributed capacitance of the leads does not

overwhelm the small intrinsic capacitance, there is significant experimental justification for

our assumption. For example, van Bentum et al.[1987] and Hartmann et al.[1988] recently

performed Coulomb blockade measurements in a scanning tunneling microscope (STM)

with normal electrodes: their measured capacitance values in the neighborhood of 10-1P F

were unaffected by the very large distributed capacitance of the STM apparatus.

To test the effect of lead impedance on the dynamics of our devices, we have

fabricated junctions in single-, double-, and eleven-junction configurations. As we

discussed in Chapter 4, the behavior of the smallest junction in each of the measured

configurations appeared mostly unaffected (except for heating effects) by the presence of

companion junctions in the leads, whose capacitance and inductance would grossly affect

the lead impedance. Thus it appears that the dynamics of our junctions depend mainly on

i t .. . . "•• . ". ....
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their intrinsic impedance. While this is in apparent contrast with the observations of

Martinis et al. [1985] on much larger junctions, we believe that the different behavior may

be due to the importance of single electron effects in our devices. As the energy change

due to the tunneling of a single electron becomes dominant, the problem will become more

microscopic in nature, and the timescale fast. The timescale for the dynamics of a

conventional semiclassical Josephson junction [of the kind used by Martinis et al., 1985]

is given by the Josephson plasma frequency, typically of order 109 - 1011 Hz. In the

opposite regime, when the charging energy is completely dominant [as is the case in the

observations of van Bentum, et a4., 1987], the characteristic frequency is thought to be the

inverse of the electron tunneling time, typically of order 1015 Hz. The faster the time scale

the higher the impedance of the inductive leads. These arguments do not show that the

devices will be completely independent of the leads; we believe, however, that the parasitic

contributions are small, and that the intrinsic capacitance Ci, in our system, is a reasonable

estimate of the total effective capacitance of the device. This position will be further

justified a posteriori by comparing the predictions of this model with our data.

Finally, since we believe that the low temperature behavior of our devices is not

dominated by dissipation in the leads, it is important to consider the nature of the intrinsic

dissipation, R(V). Since dissipation in an ideal Josephson device is determined by the

tunneling of quasiparticles, the discrete nature of the charge transfer in the tunneling

process will become important. We consider this especially in the last sections of Chapter

6, when we analyze the coexistence of the Coulomb blockade with some features of

Josephson tunneling. One interesting aspect of our measurements of RL, the low voltage

part of R(V), is that its temperature dependence follows quasiparticle thermal activation at

higher temperatures, but flattens off at low-T, as described by (4.1). We believe that the

existence of a finite RL as T--, 0 is not due to metallic whiskers partially shorting out the

barrier, since RL(O) is very large, typically of order 108 a, since the whisker's length

would be equal to the barrier thickness (-25 A), a resistance of 108 0 would require a

........ 7
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resistivity much larger than I a-cm, even for a diameter as small as one atomic spacing.

This appears unlikely, and we believe that this temperature independent dissipation term

may instead be due to a tunneling mechanism.

The apparent proportionality of the residual leakage resistance to Rn2 (see Fig. 4.8),

suggests that a possible source of low T dissipation may reside in the effect of Andreev

reflections on the tunneling I-V response. This was analyzed by Blonder, Tinkham, and

Klapwijk [BTK, 1982], who showed that the Andreev channel should have a probability

going as the square of the probability of charge transfer in the normal channel. If we

extrapolate the square law relationship back, we find that Rn- RL(O) for a resistance of

order 100a. In the BTK theory, the point at which the normal and leakage resistance are

approximately equal corresponds to a device of "barrier strength" Z [see BTK, 1982] of

order one: i.e. a device whose barrier is very weak, and whose I-V characteristic begins to

resemble a microbridge rather than a tunnel junction. A resistance of 100 D appears high

for a device with microbridge characteristics. However, this apparent inconsistency can be

resolved if we remember that there is evidence (from the magnetic field data, for example)

that the oxide barrier may be quite nonuniform. Since the Andreev term is proportional to

the square of the tunneling probability, a small fraction of the junction with a thinner barrier

may dominate in the leakage term.

5.2 Failure of Standard Approaches

As we described in Sections 2.6.2 and 2.6.3, if kT or E, are significant in

comparison with Ej, 1c(T) is no longer expected to closely follow leo(T). It is now well

established, both experimentally and theoretically,t that thermally activated "escape" from

t See, for example, Fulton and Dunkelberger (1974], Naor, Tesche, and Ketchen (19821, Danchi et al.

(1984], Silvestrini et al., [1988], and Silvestrini, Liengme, and Gray [1988], for experimental treatments,
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the minimum of the tilted cosine potential causes "premature switching" to the finite voltage

regime. An expression for the thermal escape rate was given by (2.57). For &n order of

magnitude estimate, ignoring the effect of damping on the prefactor and the current

dependence of the attempt frequency, we can write

AU

-1 O)p F
2- • (5.2)

The plasma frequency is given by w = (8EcEj)l/ 2/4, and is typically of order 1010 Hz.

As a result, in experiments with current sweep times of order 1 second, escape will occur

as soon as AU(I)/kT - In vp - 20 >> 1. Taking account of the fact that AU(1) - 2Ej(1 -

I/lco)312 to a good approximation, one expects switching to occur when this AU(1) - 20

kT. A better approximation for the average Ic expected from this model was given in

(2.58), and depended logarithmically on the current sweep rate.

Since the escape is stochastic, there will be a distribution of switching currents,

whose width was given in Chapter 2 to be:

2(1 PC 0

In our samples, ic .-.11 co, and the logarithm is of order 20, so tha.t (5.3) would give &c

0.03 leo. This result is inconsistent by an order of magnitude with the new data, in which

Sc - 0.003 Ico. The switching distribution is simply too narrow to be compatible with an

and Kramers [1940]. Ambegmokr and Halperin [1969], P.A. Lee [1971], J. Kurkijlrvi [1972], BUttiker,

H-aris and Landauer [1983], and Banme, Cristiano, and Silvestrini [1985], for thearetical treatments.
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explanation of the depression of the observed Ic so far below Ico by premature switching.

Put another way, for I so far below 1co, the cosine potential is barely tilted, and the height

of the barrier is almost independent of current. Hence a small change in current could

hardly account for a sudden onset of switching out of the zero-voltage state. Moreover,

this picture of stochastic escape is qualitatively incompatible with the finite voltage below

1c, which implies a steady-state phase evolution, rather than metastable locking in position

in a single well until the escape.

As one goes down in temperature, eventually this thermally activated escape

becomes less likely than escape by macroscopic quantum tunneling (MQT) through the

barrier. This mechanism already takes us beyond the classical regime, but in the junctions

studied previously,* this escape probability was sufficiently low that one could still treat

the phase as a rather localized semiclassical quantity, which occasionally made a

probabilistic transition through the barrier into a free-running finite voltage state. In this

regime, it was shown that there is a crossover temperature given roughly by

kBT,,os - 11o.P/2 x = (8EcE.j)! 12/212r (5.4)

as we discussed in Chapter 2. Below this temperature, the same qualitative probabilistic

switching should occur as in the thermally activated regime, except that the constant Tcss

replaces the actual temperature. Thus, the same inconsistency between a narrow switching

distribution and a huge depression of Ic below Ico exis's in this regime as in the thermally

activated one, and a more appropriate explanation must be found.

See den Boer and de Bruyin Ouboter [1980,] Prance et at. [1981,] Voss and Webb [1981,] Jacket et al.

[1981,] Waahbum et al. (1985,] Schwartz et al. [1985J Martinis, Devoret, and Clarke [1985,], Devoret,

Martinis, and Clarke (1985.]

! •4
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S.3 Extension of Standard Models

In the previous section, we have argued that the usual dynamics describing

Josephson junction behavior do not apply to our observations. The common situation of a

constant # value at I4c followed by a probabilistic switching into the finite voltage

"running" state is simply inconsistent with our measurements. Since the observed I-N

U curves are resistive, even at the lo-west cuirents, it seems very plausible that the dynamuics

of the system sic characterized by very frequent phase-slips, which would give rise to

dissipation, and thus to RO. Mechanisms of these frequent phase slips would be thermal

activation (since for our devices typical heights of the Josephson potential are of order 1K),

and quantum tunneling (since Ec is of order EJ). However, since a current bias tilts the

Josephson potential, the system would possibly exhibit no critical current at all, since once

the first phase-slip occurs, the subsequent ones become easier. To account for the

observations, therefore, we need to consider the effect of damping, as a retrapping

mechanism.

Qualitatively, the dynamics of our devices may be described as follows: At J<Ic,

the phase frequently escapes from its potential well. The energy it acquires in a 2n phase-

slip, however, is lost through damping, and the phase retraps in a subsequent well. This

process goes on until 1=1c, at which point one of two things happens,. Either the potential

tilt becomes enough for the system to acquire more energy than it loses from damping, or

some intrinsic limit to the maximum Josephson current is exceeded. We believe the first

situation to be valid at higher temperatures, in what we call the "semiclassical regime" and

the second situation ton be valid at low temperatures, in what %e call the "quantum regime".
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S.3.1 The Role of Damping in the Semiclassical Case
It is well known that wo long as a junction is underdamped, the amount of damping

Li affects the escape rate only through a change in the prefactor in (5.2). Since this factor only

enters logarithmically in the depression of Ic, this change is usually unimportant.

However, the amount of damping is the crucial factor in determining the retrapping current

rt, Because le and Ip coincide above -2/3 Tc in the new data, where they are both strongly

reentrant, it is appropriate to review the physics of what is going on with Ir as well as I•.

In Chapter 2, we discussed that in the simple RCSJ model, the retrapping current is

given by the following expression, if we ignore thermal fluctuations:

4 Ico I '(T)
"W R TC(5.5)

Here the temperature dependence of Ico is given by (5.1), which monotonically increases as

T is decreased. Accordingly, if (5.5) is to describe the temperature dependence of !r in this

reentrant regime below .0.9 To, it must result from the temperature dependence of R(T).

In fact, if we substitute the leakage resistance approximated by (4.8), an approach justified

in Section 2.6.1, we find excellent agreement with the shape of the temperature

dependence, as shown in Fig. 5.2. [The magnitude is too small by a factor -7, but we

shall see that that discrepancy can be accounted for largely by fluctuation effects which are

not included in the Stewart-McCumber analysis which gives rise to (5.5).]

5.3.2 The Effect of Thermal Fluctuations on the Critical Currents

It is well known, as noted above, that thermal fluctuations have the effect of

reducing the measured Ic by inducing premature switching out of the zero-voltage state. It

is less well known that thermal fluctuations have the opposite effect on I,, i.e., they

increase it. This point has been made by various authors, recently by Cristiano and

I.y4aoL~ ~ .--
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Fig. 5.2: (a) Ic and I, vs. T for the sample with R,= 70 kf'. (b) Left: predicted low
temperature It, due to Zener tunneling and thermal activation, as described in Chapter 6.
Right: predicted 4tT), described in the text.
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Silvestrini [CS, 1986; 19871 who also presented the results of numerical calculations.

Since this result seems counter-intuitive to many, it is worthwhile to give a simple physical

argument which establishes the correctness of the sign of the effect.

Consider Fig. 5.3 (a), which depicts the tilted washboard potential at the current

corresponding to Ir in the absence of fluctuations. On the vertical axis, we plot the total

energy, kinetic plus potential, so that without dissipation the representative point follows a

horizontal trajectory. At this current value, the representative point, starting at the top of

one barrier follows a trajectory which reaches the corresponding point at the next

maximum, Now consider the effect of fluctuations which raise or lower the energy

discontinuously at some point on this trajectory. If the initial fluctuation is downward, the

trajectory continues downward because energy is dissipated at the rate -V2/R and is not

recovered from the current drive since the trajectory is confined to ' single minimum. On

the other hand, if the initial fluctuation is upward in energy, this increases 1/2 COA and

hence V2AR, so that the trajectory falls more steeply, eventually returning to the marginal

trajectory on which it started,which it follows stably until the next fluctuation occurs, Since

upward fluctuations recover while downward ones cause retrapping, it is clear that the

fluctuations tend to make the system more stable against runaway. Accordingly, the

marginal current value (tilt) giving retrapping is greater in the presence of fluctuations than

without them, so !r is increased.

As shown schematically in Fig. 5.3 (b), then, the effect of fluctuations is to induce

a convergence of I, and Ic toward a common intermediate value, eliminating hysteresis.

Another effect of the fluctuations is to cause both Ir and Ic to acquire a probabilistic

switching character, as has been mentioned earlier. As the fluctuations increase further in

strength beyond that causing the coalescence of Ic and Ir, the switching back and forth in

the vicinity of this critical current value becomes so rapid compared to experimental time

M. Tinkham, privae communication.
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(a)
upward fluctuation

no fluctuations

downward
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without fluctuations

Ir _-. ,,--- -" 'Co
with fluctuations

Fig. 5-3: (a) Schematic of the effect of fluctuations on the retrapping process. (b) Sketch
of the effect of thermal fluctuations in reducing and eventually eliminating the hysteresis in
an underdamped Josephson junction.
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scales that the measured voltage averages to give a smooth continuous resistive transition.

The value of this coalesced 1c = Ir can be determined by simulation methods, but one can

also reason that it will be determined by the physics of I, rather than the physics of 1c, since

when fluctuations are this prominent, the system is activated out of its metastable minima

so quickly that "premature" switching is taking place continuously. The crucial question is

at what current the damping assisted by fluctuations leads to the retrapped state being the

more dynamically stable one, and this is the consideration determining 1p. We conclude

that, in the non-hysteretic regime where fluctuations are dominant, the measured critical

current Ic should be interpreted as Ir as enhanced above the value given by (5.5) by the

presence of fluctuations. This theoretical conclusion is confirmed by the experimental

observation (see Fig. 5.2) that the temperature dependence trend set by the coalesced 'r~lc

in the non-hysteretic region continues as that of Ir when the junction becomes hysteretic.

With the principle established that Jr (including the major enhancement by

fluctuations) determines not only Ir at all temperatures but also L: above the temperature at

which hysteresis disappears, we now must estimate how large is the enhancement of (5.5)

by fluctuations. The results of CS are restricted to values of y= 2EjlkT = 5 - 50, and

attempt numbers L - 103 - 105, whereas in our samples y is typically less than I and the

attempt numbers are of order 1010. Still, we can use their results by noting that they show

that the enhancement of I, varies approximately linn;arly with the logarithms of L and.

Using this observation, if one extrapolates their results to j~land L -1010, one estimates

an enhancement factor of roughly 5 or greater, for conprion, the largest enhancement for

the parameters considered by CS is about 3, so this extrapolation i6 not terribly extensive.

It is reassuring, nonetheless, that our direct simulations also give enhancements by similar

factors. Since it appears that the enhancement factor should not depend strongly on Y so

long as it is less than or of order unity, nor on L so long as i~is within an order of

magnitude of 1010, we conclude that the temperature dependence of the obscrved Ir should

be very similar to that of the unfluctuated result (5.5), but that the magnitude should be
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larger by a factor of orderS5 because of the fluctuations. Considering the uncertair ties in

parameter values (especially C) and in this extrapolation. this estimate is quite consistent

with the observation that the measured Ir is roughly 6-7 times the value given by (5.5), and

has essentially the same temperature dependence.

S.3.3 Classical estimates of R,

Another interesting feature of our observations is the presence of a resistive state at

currents below the measured Ic. At higher temperatures, the INV curve is not hysteretic,

and the presence of a dissipative branch is not surprising. We have seen that damping

appears to play a key role in the determination of the critical current in this regime. We

believe that the observation of a nonzero R, is also primaril due to damping.

For almost all our junctions, at temperatures above 1 K, thermal fluctuations are

very large compared to the Josephson coupling energy. The escape out of the Josephson

* ~potential well is thus vei rapid, with rates of the order of the Josephson plasma frequency

oý. The "phase point" is thus constantly out of the Josephson potential well, and gradually

slips downhill. At currents less than the retrapping current I,., however, the escape of the

phase point over many wells is not energetically favorable: it loses energy through

dissipation faster than it gains energy from the motion downhill. The phase point will thus

retrap in a subsequent well.

It would be desirable to compare the observed values of R0 with estimates extracted

from theoretical calculations of the rates of escape out of the Josephson potential.

Unfortunately standard theoretical estimates for the escape rate out of a metastable potential

break down when kBT becomes greater than the barrier height. Morwv%ýr, we cannot

interpret our low temperature data in this fashion, since below I K we expect quantum

tunneling to be very important. Our comparison with accepted thermally activated escape

theories is thus limited; we can only expect quantitative agreement from our lowest

resistance sample (Rn=55O02, E,-45K), for which the Josephson coupling energy is
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reasonably large compared to k8T even at relatively high temperatures. For this sample, at

temperatures above 2K, the contribution of quantum tunneling should be minor, but the

ratio of E, to kBT is still large.

As we point out above, the existence of substantial resistive voltage even for I <«< c

indicates that the phase variable is steadily evolving in time, at an average rate do'dt =

2eVh1. In the presence of a current, the successive minima drop in energy by hI/2e, and

the barrier heights for escape in the uphill and downhill directions are shifted by ±hl/4e

with respect to the zero-current case. As a result the escape probability is greater in the

downhill direction than in the uphill one, and there is a net rate of downhill tunneling

proportional to I (for small 1). Hence there is a voltage V - doldt o- I, which can be

described by the resistance Ro = V/I. We assume that the system will lose energy by

dissipation and retrap in the adjacent well, making the phase slip per activation event

approximately equal to 2n at low current.

We now need to cadculate the difference between uphill and downhill escape rates.

We define F"' to be the escape rate to the right (downhill) and F" to be the value of the

escape rate to the left. Expanding around l=O the following estimate is obtained.

R=2e T dr 2 e- (5.6)

To esthnate the escape rates we assume that /' and P are independent: i.e. we assume

that 1- is only dependent on the barrier height to the right, and not affected by the fact that

escape to the left is also possible. P'- and Fr can then be estimated by using results from

thermally activated escape theories. They are functions of the uphill and downhill barrier

heights, respectively, and the resistance and capacitance of the device. For the parameters

of our lowest resistance junction (Rn= 550 Q), the differences in the estimates for the

Kramers [1940], BEttiker, Harris and Landauer[1983], and Barone, Cristiano, and

_ -- "• ',,;
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Silvestrini[ 1985] theories are small. We use the last approach for our actual estimates since

it is valid closer to the breakdown at EJ-kBT. The escape rate is thus given by [Barone,

Cristiano, and Silvestrini, 1985]

r n-j -(5.7)

where Uo is the barrier height (in the uphill or downhill direction) and Eo is the initial

energy of the representative phase point, both normalized to EJ, while Y= 2Ej/kBT. Eo is

not a well known parameter for the system: however, it is reasonable [Barone, Cristiano,

and Silvestrini, 19851, in the large rlimit, to assume that Eo~ 2/y, which corresponds to the

particle having initial energy equal to kBT. For large y, therefore, EO is small, and (5.7) is

easily applied.

Using (5.6) and (5.7), we can now estimate the low current resistance Ro for our

lowest resistance (largest 2) sample. The agreement is excellent, as shown in the Arrhenius

plot of Fig. 5.4, using the estimated intrinsic capacitance Ci, the leakage resistance given

by (4.8), and no adjustable parameters. We can use the same approach to estimate Ro for

intermediate resistance samples (having lower 7). However, (5.7) becomes much more

sensitive to Eo, and the approach only works as an order of magnitude estimate.

For our higher resistance samples, standard models of thermally activated escape

no longer apply. For the sample with Rn= 140kW, for example, the Josephson coupling

energy Ej only corresponds to 0.3K. Except at the lowest temperatures, the representative

phase point is constantly thermally activated out of the potential well. The motion of the

phase point, therefore, might resemble more a diffusive random walk, than a sequence of

well-defined activated jumps from well to well. Unfortunately, to our knowledge, this

regime has not yet received extensive theoretical scrutiny, in the underdamped case. To

obtain a simple phenomenological prediction, we assume that the rate of motion downhill is
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Fig. 5.4: Ro vs. T 1 for the sample with Rn= 550 12. The line is a theoretical fit with no
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proportional to the amount of time the system spends above the barrier. The

proportionality constant must reduce to Rn as T-4 Tc. We write

Ro Rqtm+( Rn - Rq$,)e-AU kT (5.8) A

where Rqtm is the contribution of quantum tunneling, estimated below in section VIII. The

activation energy AU, given by the barrier height - 2Ej in a classical treatment, might be

reduced in a more complete quantum treatment, since part of the Josephson potential well is

below the lowest quantum state. This rough phenomenological estimate (5.8) is good

enough to give an order of magnitude estimate, and an idea of the general trend of the data,

as shown in Fig. 5.5, where Rqtm was chosen to fit the limit as T-*O. A more complete

treatment will be required to obtain quantitative agreement

I .-

* 1
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5.4 Summary and First Conclusions

Fi;)m the above, we conclude that the semiclassical model can account for the entire

JI,(T) and for the Ic(T) (and Re, qualitatively) in the non-hysteretic tenmperature range,

provided:

(a) the effective capacitance in the RCSJ model has a value - 1-2 iF, as estimated

from the geometry with little allowance for capacitance contributed by the leads.

(b) The temperature-dependent damping is governed (at least in the frequency range

relevant to Ir) by the leakage resistance (4.8), which agrees with the measured

value of RL;

(c) Thermal fluctuation effects enhance the Ir given by (5.5) by a factor of order 5,

as expected from simulations.

However, the semiclassical model can not account for the low temperature data, where Ic >

Ir, with a measurable resistive voltage at all current levels, including I < Ic. The possibility

that quantum effects provide the explanation is suggested by the fact that for C - I fF, as

found above, the Coulomb charging energy Ec = e2 /2C - I K, which is comparable with

Ej. In the next chapter, we will explore this possibility.

*.:
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CHAPTER 6

DISCUSSION: THE QUANTUM REGIME

In the preceding chapter we have given a phenomenological classical treatment of

the behavior of a Josephson junction when Ej is of order kBT. In our devices, however,

the estimated charging energy is also of order the Josephson coupling energy, which

should cause very large quantum phase uncertainties, as discussed in Chapter 2. As the

ratio of charging to Josephson energy becomes of order one , the width of the ground state

wavefunction in 0 space approaches the width of the Josephson potential well, and the

tunneling rate from well to well becomes very rapid, of order the plasma frequency ap,

where *wp = (8EcEJ)112. Therefore, to understand our measurements, especially as

thermal fluctuations freeze out for T < 1K, it is necessary to extend our treatment to inw -de

the quantum mechanical nature of the phase.

We begin this chapter by using a model in 0- space to obtain some estimates for Ro

and Ic in Sections 6.1 and 6.2. Sectiors 6.3 and 6.4 analyze the consequences of a simple

Q-space treatment which should be more appropriate in the large EcEj limit.

6.11, Interpretation of the Resistance Ro

Our treatment of this problem in the quantum regime is quite similar to that given in

Chapter 5, for the classical case. For the lower voltage branch of the I-V curve, at I < Ic,

the expectation value of the phase tunnels from well to well, evolving in time at a rate dldt

= 2eV/. To develop an interpretation of this voltage in the #-space framework, we assume

that the degree of delocalization is sufficiently small that we can reasonably represent y'(0,t)

by , function localized in one well, which occasionally tunnels ir.:o an adjacent well. (For

the present, we assume T = 0, so there are no thermally activated hops.) In the presence of

a current, the tunneling probability is greater in the downhill direction than in the uphill

i:..-..
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one, and there is a net rate of downhill tunneling propoitional to I (for small 1). Hence there

is a voltage V - dddt -I, which can be described by the resistance R. = V/I. While

perhaps qualitatively appropriate for all samples, this picture can only be expected to be

quantitatively correct for the samples withx < 1 (x mEcSEJ), so that the phase uncertainty is

still not large compared to 2 x The sample with Rn= M4.8 kU and x-0.25 thus appears to

be a good example for testing the accuracy of this model.

We implicitly assume that there is sufficient damping present that, after each

tunneling event, the system equilibrates into the lowest quantum state in the well into which

it has just tunneled, before tunneling again. If the system did not lose energy in this way, it

would run away, since in successive wells (in the downhill direction) it would experience

lower and lower barriers, and tunnel ever more readily, until it was above the barrier

entirely. Of course damping also reduces the tunneling rate, as we discussed in Chapter 2,

but a calculation of the tunneling rate in the absence of damping provides a useful starting

point, giving an upper bound on the resistance Ro. We also ignore any effect of phase

coherent reflections from subsequent wells of the Josephson potential. This is expected to

be a significant source of error, especially for values of x > 1, in which case V(O) is

expected to be significantly spread out over more than ont potential well.

W- assume that /, the tunneling rate to the right (downhill) and P-, the tunneling

rate to the left are independent. We obtain, as in the classical case,

20 2e T -" (2X)(A r (6.1)

To obtain a first estimate of Ro we use the WKB approximation result for F. The WKB

tunneling rate was given in Chapter 2

S0) vS
(6.2)

I
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Fig. 6. 1: R0 vs. x =ES4E,. Comparison of experimental values, values obtained using the
WKB approximation, and values obtained numerically. The dashed horizontal value
indicates the value of the quantum resistance Rq g~ 2i4
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where v = (V 1#/fto).)'2, Vb is the barrier height, equal to 2EJ ± hII4e, o), is the classical

resonant frequency of the well,'A•O= Am = (8EjEC)11', at I < <Ico. X and s are numerical

constants, which are functions of the shape of the potential and of the damping. For the

cubic potential approximation, and assuming low damping X -52.1, s - 7.2. Combining

(6.1) and (6.2), we obtain an analytical estimate for Ro, which we compare with the

measured low temperature values in Fig. 6.1. While the value of Ro for the sample with

RR= 14.8 kW2 (x - 0.25) is in good agreement with the estimate, the samples with large x

exhibit values of Ro considerably lower than the estimate.

In the large Ec limit, it is seems apparent from Fig. 6.1 that characteristic low-T

values of Ro approach a value of order RQ = h/4e2 - 6.1 kW. We do not believe this to be

fortuitous. If we take a maximum reasonable energy level width equal to the barrier height

8E - 2EJ ± h1/4e, the net escape rate to the right becomes PI -' = (2z)112e. Using (6.3),

we have Ro = (W2el)(2x)1/2e) = (2xr) h/4e2 , which is in reasonably good agreement with

the trend in Fig. 6. 1.

One large source of discrepancy in some of our comparisons is the inaccuracy of

WKB tunneling estimates for values of x > 1. In this range, the width of V(O) becomes
comparable to the well spacing, and only one energy level is found in the well. Thus the

semiclassical WKB approximation is no longer appropriate. To obtain a better estimate for

the tunneling rate in the regime wire x near 1, we have carried out a numerical calculation.

We isolate a single well of the Josephsor potential by considering the potential UA shown

in Fig. 6.2. For any energy, one can integrate the Schrtdinger equation to find the

resulting wavefunction WE(O). We consider an initial condition iy(t=O) = V, chosen to be

essentially localized in the potential well; Vi, is defined by us as the ground state of the

potential U5 shown in Fig. 6.2. We then expand V. using the VE(O) wavefunctions, and

compute the time evolution V'(t) Finally, we can extract the probability that the system has

..- "
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Fig. 6.2: The two different potentia!s used in the numerical calculations of Ro. (a)
Metastable potential, used to calculate WE. (b) Stable potential, used to calculate Wo.
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not tunneled, which we call P(t), from the projection of W/(t) on Vo; P(t) f yr* W(t) /2.

We define a normalized spectral weight

A (6.3)

where A is the normalization constant given by A = V 0* IW, f VE* V'E We then have

P U( t)= I dEf (E )e- E U 

(6l.2

1 (6.4)

Insofar as the shape off(E) is approximately Lorentzian, with full width at half maximum

of 69, then we may approximate P(t) by a function of the form --t/r The escape rate r-1 is

then given by

f (6.5)

Fig. 6.3 shows a comparison of escape rates calculated with the WKB formula

(6.2) and by the numerical technique discussed above. We see that, while for values of x

< < 1 the results of the two calculation methods converge, for x > 05 there is considerable

discrepancy, as expected; the tunneling rate calculated by the wavefunction expansior,

method outlined above is significantly lower. In particular, note that the mimerical estimate

yields 8E < EJ, which is self-consistent, whereas the WKB escape rates give 8E > Ej,

which is conceptually inconsistent with the escape out of a well of depth Ej. This

systematic difference in lifetime is also in the right direction to improve the agreement with

the observed values of RO.
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Fig. 6.3: Comparison of NMB and numerical estimates for the es~ape rate, expressed as a
normalized energy-width, and therefore only dependent on x. 8E=*Iz, where Ir is the
escape rate.
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We obtain direct numerical estimates for Ro by calculating the escape rates r+ and

P" after small positive and negative (respectively) currents have been applied, tilting the

potential. The numerical estimates for Re are shown in Fig. 6.1, in comparison with the

WKB estimates and the experimental values. While the wavefunction expansion method

allows us to obtain reasonable estimates in the regime with x near 1, where WKB methods

have broken down, its range of validity is also limited. As x becomes larger than one, the

range of bias current I giving a constant Ro is very small, making estimates of Ro very

inaccurate. For x distinctly larger than one, the calculatedf(E) also no longer resembles a

Lorentzian bell shape, and P(t) can no longer be approximated by a decaying exponential.

At this point the quantum phase uncertainty approaches one well spacing, and our

assumption of a well defined exponential escape rate necessary for evaluating (6.3) breaks

down: other methods must be used to estimate Ro. The numerical calculations are an

improvement over the WKB estimates, but a more refined model, perhaps taking into

account coherent reflections between subsequent wells is needed.

While our model is inaccurate for x > 1, it provides a very good account of the

behavior of our sample with normal resistance 14.8 k12. For this sample, x is only about

0.25, so that W(O) should have relatively small width compared to the spacing between

Josephson potential wells, and our model appears reasonable. As shown in Fig. 6.4, the

estimated value is in very good agreement with the low temperature value of Ro.

Moreover, the crossover temperature at which the system apparently goes from this

quantum tunneling limit to thermally activated escape is in excellent agreement with the

Tcross FIoaV2jkB, as expected from (2.34). The predicted values of Ro(O) and of Tcross

contain no adjustable parameters: Rn is measured, and the capacitance is given by the

estimated intrinsic capacitance Ci. This value of the capacitance is also in agreement with

that involving the charging effects described in Chapter 4, And interpreted below in section

6.4.

.R•
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Fig. 6.4: Ro vs. T71 for the sample with RR= 14.8 kM2. The horizontal line is the zero
temperature estimate obtained by numerical methods. The dashed vertical line corresponds

to T =4*2n2•a , at which the crossover to the quantum limit should occur.
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This success in fitting the measurements performed on the sample with Rn = 14.8

Wkf, is perhaps an indication that the simple underdamped arguments used above are indeed

appropriate. The effect of damping is, in general, to reduce the tunneling rate and the phase

fluctuations. In the semiclassical limit, we discussed in Chapter 2 that for damping to have

a significant effect, a must be of order of or greater than one, where a is given by

S -•-- R -- - (6.6)

where RQ = h/4e2 is the quantum unit of resistance. Using (6.6) as a rough guide, the

underdamped results of this section should thus in fact be a good approximation as long as

RL is used as the resistance R, as was appropriate in the classical treatment of Chapter 5

since Ec - EJ, and RL,- 10 - 500 MD >> RQ at low temperatures.

The success of this simple approach might be misleading. One of the critical steps

in our treatment was that even though the tunneling rates were calculated in the

underdamped limit, enough damping was assumed to be present to retrap the expectation

value of the phase in the next well, after the tunneling event had taken place. It is unlikely

that if the effect of the quasiparticles is completely described by the high resistance RL,

enough damping would be present to retrap the phase. Quite possibly, the effective

damping resistance seen by the junction is frequency dependent, as was suggested by Ono

et al. [1986]. A more sophisticated treatment, perhaps involving a time-domain approach

to the tunneling process in the presence of damping, is needed to resolve these questions.

6.2. Interpretation of the Critical Current le

Having developed a picture of the evolution of the system which gives rise to a

linear resistive voltage at low current values, we now address the question of the critical
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current, i.e., up to what current level is this regime of slow phase slippage locally stable?

* As we have seen in the semi-classical regime, two aspects must be considered. There is an

absolute limit (Ico in the semi-classical case) set by the binding energy of the phase-locked

state, and there is a dynamic limit (Ir in the semi-classical case) set by the dissipation which

prevents runaway and causes continual retrapping into the slow phase-slip (low voltage)

regime. In the quantum regime, we are only able to provide an estimate for the "binding

energy" of the phase locked state. Our estimate should thus serve as an approximate upper

bound for the actual critical current Ic. Quantitative estimates for a "dynamic" critical

current, which take into account of the device's relaxation by dissipation, are difficult in the

quantum regime, and will be left to future work.

Because the state of the system is time-dependent in the presence of a current,

which causes phase slippage, there is no simple way to find the analog of the classical

maximum supercurrent, 1co, even at T = 0. However it seems plausible to argue that, just

as tc, = 2eEj/* in that case, where Ej is the binding energy due to the cosine potential, in

this case we might expect Ic = (2e01) x (B.E.) where B.E. is the binding energy estimated

in Chapter 2 by (2.16). The rationale is this: The work done by the current in an

incremental phase shift is (A/2e) I do. For stability, this must be less than dE = [dE(O)ldo]

do. This leads to I < (2e01) [dE(O)/dJlmx, or 2eEjI/t for the classical case E(O) = -Ejcos 0.

If we assume that the B.E. is lost for a phase shift AO - I in the quantum case as well, it

follows that Ic- (2e/l) (B.E.). In particular, in the limit where Ej << Ec, we have B.E. =

E•I8Ec [from (2.16)], which leads to

Ic = (Ej/8Ec) ICo (6.7)

Insofar as this formula is correct, the observed Ic should scale with Rn"2 rather than with

Rn-1 as does Ico. In fact, just such a scaling with Rn-2 of Ic (extrapolated to T = 0) is found

for our highest resistance samples as shown in Fig. 6.5. Moreover, the absolute numerical

! 9W,
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magnitudes are also in reasonable agreement if Ec is based on the same capacitance values

of I - 2fF used earlier in interpreting Ro. Again, this must be considered quite satisfactory

in view of the approximate nature of the argument.

In a recent Comment on our 1988 Physical Review Letter article [Iansiti et al.,

1988a] Mirhashem and Ferrell [1988] have suggested a similar estimate for the reduction in

Ic due to quantum phase fluctuations. They estimate the linear response of a Josephson

junction by calculating the inverse inductance of the device, given by

LI = (2e/9)2 EJ <cos O> (6.8)

where < > denotes the ground state expectation value. As the ratio of Ec to EJ increases,

quantum fluctuations increase, and <cos O> decreases. Assuming that the cridcal current

scales with the linear response (as it does in the absence of fluctuations) they obtain, at

large x=EcEj',

Ic = (EJ14Ed) Ico (6.9)

which is a factor of 2 larger than (6.7). Fig. 6.6 shows a comparison of these two Ic

estimates calculated for 0 < x < 7, a range covering all our experimental data. While the

Mirashem-Ferrell estimate is closer to the experimental values for large x, both approaches

provide reasonably satisfactory agreement, given their approximate nature and the

experimental uncertainty in C. t

SI
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Insofar as this formula is correct, the observed 1: should scale with Rn-2 rather than with

RW' as does Ico. In fact, just such a scaling with Rx-2 of c (extrapolated to T = 0) is found

for our highest resistance samples as shown in Fig. 6.5. Moreover, the absolute numerical

magnitudes are also in reasonable agreement if Ec is based on the same capacitance values

of I - 2fF used earlier in interpreting Ro. Again, this must be considered quite satisfactory

in view of the approximate nature of the argument.

In a recent Comment on our 1988 Physical Review Letter article [lansiti et al.,

1988a] Mirhashem and Ferrell [1988] have suggested a similar estimate for the reduction in

4c due to quantum phase fluctuations. They estimate the linear response of a Josephson

junction by calculating the inverse inductance of the device, given by

L-1 = (2e/h)2 EJ <cos O> (6.8)

where < > denotes the ground state expectation value. As the ratio of Ec to Ej increases,

quantum fluctuations increase, and <cos O> decreases. Assuming that the critical current

scales with the line-- -esponse (as it does in the absence of fluctuations) they obtain, at

large x=EEj,

Ic = (Ej/4Ec) lco (6.9)

which is a factor of 2- larger than (6.7). Fig. 6.6 shows a comparison of these two Ic

estimates calculated for 0 < x < 7, a range covering all our experimental data. While the

' Mirashem-Ferrell estimate is closer to the experimental values for large x, both approaches

provide reasonably satisfactory agreement, given their approximate nature and the

experimental uncertainty in C.

lt,
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Fig. 6.5: Measured critical current i (at H=O and T=3OmK) for six samples (black
squares). The A-B line is the Ambegaokar-Baratoff critical current prediction. The other
two lines are our estimate (6.10), plotted for two reasonable capacitance values.
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Fig. 6.6: Measured critical current lc (at H=O and T=3Onr.K) for six samples (black
squares), plotted against the estimated ratio of charging to Josephson coupling energy.
Two of the estimates shown are obtained by our binding energy method (6.7), and by the
linear response method by Mirhashem and Ferrell (19881 given in (6.9). The third estimate
is our Zener tunneling estimate (only valid at large EcSEj), given by (6.10).
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6.3. Analysis in Q-space

The simple analysis we have provided in the previous sections is successful in

providing a serniquantitative account of our observations in the regime with Josephson
energy of order the charging energy (x-1). As we decrease the Josephson energy further,

quantum phase fluctuations increase, and the behavior of the devices becomes increasingly

difficult to characterize by models based in 0 space. It is useful to consider the opposite

viewpoint. Several authorst have investigated Josephson junction dynamics in charge

space, looking at the behavior of Q, the quantum mechanical conjugate of 0. The energy

spectrum of the Josephson device assumes a band-like structure, reminiscent of that of a

one dimensional crystal. Such models appear particularly appropriate for the case Ec >> EJ

(that is, x >> 1), where the band structure approaches that of a free particle, with small

energy gaps caused by the periodic Josephson potential. The essence of these models was

described in Chapter 2. The dynamics in this limit, when a current is applied to the system,

were described in Section 2.4.2, using the approach of Guinea and Schdn [GS, 1986;

1987]. The energy spectrum GS derive, shown in Fig. 2.6, is shown again in Fig. 6.7.

The currrent I equals dQx/dt. Whereas at low currents the system follows the lowest

energy bands, at high currents the system begins to Zener tunnel into the higher bands.

The Zener tunneling probability, as discussed in Section 2.4.2, is given by Pzner - exp (-

Ni'z), where 1z is given by

t See, for example, Chakravwty, (1982], Schmid, [1985], Likharev and Zorir, [19851, Mullen, Ben-Jacob,

and Schuss, [19881, Ben-Jacob, Gefn, Muilen, and Schuss, [1988], Ben-Jacob, Gefen, Mullen, and Schuss,

[1985], Widom, Megaloudia, Clark, Prance, and Prance,[1984], and refea..aces therein, Fisher and Zwerger,

(1985]. Zwerger, (1987), Fisher, [1986], Guinea and SchOn, [1986; 1987], BOuiker, (1987].

.1'
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Fig. 6.7: Sketch of the energy spectrum as a function of applied charge derived
for a Josephson junction in the large charging energy limit. [After Guinea and
Sch6n, 1987.]
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z = eEj21/8Ec = Ic = (xBjlI6Ec) leo (6.10)

We associate 1z with the observed critical current ,o A comparison of this critical current

estimate with the experimental values is given in Fig. 6.5. The physical picture we have is

that for I < lz, occasional Zener tunneling occurs, but the system quickly relaxes back

down to the lowest band. The associated dissipation contributes to the resistance Ro, but

this does not spell the end of the low voltage regime. Rather, we associate the end of this

regime with the complete breakdown of the band gap, allowing the system to run up onto

the upper, free-particle-like bands, where it acts "normal", i.e., as if Ej were zero. Because

of the exponential dependence, one might expect our criterion to be correct to within a

factor of 2; hence the three estimates (6.7), (6.9), and (6.10) are consistent within their

expected accuracy. In particular, all three results share the property that kc scales with Ej2

or Rn"2 , rather than with the first powers of these quantities, as does Ico.

At T > 0, the probability of thermal excitation across the band gap Ej would be

expected to be approximately given by eEjlIkT on each cycle of the Bloch oscillation. If this

probability is added to that given by (6.10), and the sum set equal to lie in analogy to the

above argument, we obtain a simple phenomenological estimate for the effect of

temperature in reducing I.. This argument gives the correct characteristic temperature for

substantial reduction in ho namely Ejik. This rough estimate was shown in Section 4.2.1

to be representative of our measurements.

In this approach, as in the #-space one, damping during the MQT process is

expected to have a strong effect in reducing the tunnel probability, and hence increasing the

estimated critical current. The physical arguments of BUttiker and Landauer [1986] suggest

that we can still use

dE M 2((E 
6 E.1 cos1

d# =- C(6.11)
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(which was dicussed in Chapter 2 in the classical regime) at least approximately, in the

MQT case by taking the absolute value of the quantity under the radical. Thus in the present

case it has a similar value in the barrier and in the well. However, the question is what.

value of R is physically correct to be inserted into this formula. We can say that R ,,

would be consistent with our data, in that it would introduce rather modest corrections

which could be accomodated by choosing a different criterion for 4c, such as the criterion

that Pz be set equal to e-2 rather than e-1. On the other hand, RL is so large that its damping

effects would be negligible in this regime. Likewise, Ro is sufficently below Rn at low

temperatures that it would, if applicable, give such large corrections as to be very difficult

to reconcile with the data. Even more inconsistent with the data. would be any damping

resistance comparable with the 'mpedance of free space Zo = 377 D, such as the

characteristic impedance of the leads attached to the junction.

6.4. Coexistence of Coulomb Blockade and Josephson Tunneling

We have provided a number of semiquantitative models accounting for the basic

features of our I-V curves observed at zero magnetic field. As described above, however,

we also performed a second set of experiments: By applying a magnetic field to the

junctions, we depressed the Josephson coupling even further. At low field values we

obtained measurements similar to the ones made at zero field, with Ro increasing and Ic

decreasing, as the field was increased. At higher fields, however, we discovered a new

regime, exemplified by the I-V curve shown in Fig. 1.4. As mentioned above, the new

striking feature is the coexistence of a sharp knee at a voltage corresponding to e/2C, with a

very sharp voltage jump at a "critical current" ic.

We have proposed [Jansiti, et at., 1988a; 1988b] the following simplified

phenomenological picture: The difference in electrostatic energy due to the transfer of a
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single electron is e2I2C. In our samples this energy is large, typically of order I K. At low

voltages, below eI2C, the system does not acquire enough energy from the source in the

tunneling process to offset the increase in electrostatic energy involved. Tunneling is

therefore energetically. unfavourable and is inhibited, provided the temperature is low

enough for thermal activation processes to freeze out. This yields a static situation;

electrons are "trapped" on the junction electrodes and the dynamic resistance is extremely

high. As V becomes greater than eI2C, on the other hand, a single electron transfer

becomes energetically favorable, and the differential resistance dei-.reases, giving rise to a

knee in the I-V curve at that voltage. In this dynamic regime, if the instantaneous voltage

increases beyond e/C, it becomes energtetically favorable also for Cooper pairs to tunnel,

and the voltage is driven back down. The observed average voltage is thus restricted to a

value below e1C, until the system's ability to transfer Cooper pairs is exceeded at 1=I,. It

thus appears that Josephson tunneling plays an important role in the explanation of the

observed plateau in the 1-V curve and the subsequent critical current.

This explanation can be restated in terms of the band m-Ael described in Section

4.3. The highly resistive part of the I-V curve may then be due to -the system being trapped

at a fixed charge on the lowest band. This configuration is, however, only stable for

V<eI2C. At higher (average) voltages, the system must spend time in higher bands and

tends to relax to lower bands by electron tunneling, conducting charge and reducing the

differential resistance of the device. This happens until the current is large enough for

Zener processes to become so likely that the Josephson band gaps are ineffective at keeping

the system in low bands. At this point (1=1c) the voltage rises sharply to the energy gap.

This interpretation raises questions about the most retdistic way to model the sourceI of current in the experimental setup. If an ideal source were feeding current to the system,
charge could not be trapped on the electrodes, and Qx could not remain fixed on one of the

branches of the energy spectrum, at low currents. Our actual current source was described

in Chapter 3. Naturally, if the leads are included in the treatment, the source acquires a



frequency-dependent impedance. The applied current is then constant only if we average

over timescales longer than those characteristic of the leads. At the fast timescales relevant

to the dynamics of the device, the characteristic impedance of the source is likely to be

much lower than the nominal 500 MCI of the diswtit roont emperature dc biasing circuit.

More appropriate characteristic values might depend on the transmission line properties of

the leads, and could hardly be expected to be larger than a few ki's. On the other hand,

our apparently successful interpretation of the zero-magnetic-field results successfully

relied on the assumption that the junctions are in the underdamped limit, which would

imply that the characteristic impedance seen by the devices was at least larger than RQ - 6

k42.

While these considerations are by no means resolved, it is not inconceivable that,

depending on the intrinsic impedance of the junction, charge could either become trapped

on the electrodes or flow through the junction at a steady rate. The RCSJ model describes

the impedance of the Josephson junction as the parallel combination of three channels. The

Josephson channel is inductive, and shorts out the junction at reasonably low frequency.

However, in the quantum regime, the Josephson inductance is given by (6.8), which

diverges as <cos O> -4 0, i.e. as quantum phase fluctuations increase. Therefore, as the

ratio of charging to Josephson energy increases, the intrinsic impedance of a Josephson

device also increases; the room temperature current source might become ineffective, at

timescales short compared to the time constant of the experimental set-upt. Charge might

thus temporarily become trapped on the junction electrodes, giving rise to the very high

resistance branch observed on the I-V characteristics at low zurrents.

t Which is quite long, of order one msec.

A
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CHAPTER 7

CONCLUSIONS

This report describes the first study of submicron thin film devices lithographically

patterned in this laboratory. To carry it out, we fabricated high quality high resistance Sn-

SnOx-Sn tunnel junctions using an electron-beam patterning facility, which in part was

developed and built specifically for this experiment. Samples in single, double, and

eleven-junction-army configurations were succesfully fabricated. The measurements were

performed in a dilution refrigerator, at temperatures between 20 mK and 4.2 K, and at

magnetic fields between 0 and 3 T. These experiments yielded some striking results which

probe the crossover region between the conventional Josephson regime, in which the

Josephson energy Ej is much larger than the charging energy Ec, and the opposite regime,

in which charging effects are dominant. These results are outlined below:

When the charging and Josephson energy are of comparable magnitude, the

measured I-V characteristic is always resistive, even at low currents I < Ic (where R NRo <

Rn); apparently the very low Josephson barrier height, comparable to kBT or to the energy-

level width, causes very frequent phase slips, due to thermal activation and/or quantum

tunneling. The critical current itself, now defined as the current at which the average phase

slip rate sharply increases to the energy gap frequency, is greatly reduced below the

unfluctuated Ambegaokar-Baratoff critical current Ico, even at the lowest temperatures, and

apparently scales with the binding energy of the ground state, i.e. with Rn-2 for Ec > Ej.

If the Josephson energy is reduced to a value much smaller than the charging

energy, by applying a magnetic field, we discover a new regime. The I-V characteristic

becomes very resistive (R - RL >> Rn) at low currents, with a sharp knee at a voltage

apparently corresponding to e/2C. The average phase slip rate increases very quickly at

low currents, as the Josephson potential seems too weak to localize 0. While quantum

fluctuations in 0 are presumably large, the charge now seems classically well defined. This



is perhaps demonstrated by the knee at eI2C, the voltage difference required before the

tunneling of a single electron becomes favored despite the capacitive energy Q2212C.

Since we have attempted to explore a relatively new regime in the behavior of

Josephson devices, we have raised a number of puzzling and as yet unresolved questions.

Among these, perhaps the most striking one relates to the apparent isolation of the devices

we studied from the ouxtside environment: why are the contributions of parasitic

capacitance, and the impedance of the leads, apparently not overwhelming the dynamics of

our small junctions? Our findings appear to be in agreement with measurements made on

scanning tunneling microscopes [see Van Bentum et al., 1987; Hartmann, at al., 1988].

However, little consensus has been reached on the reason for this puzzling observation.

To what extent can the dynamics of a mesoscopic device be accurately modeled using

standard circuit techniques? More work, both on the experimental and theoretical side,

seems warranted before this controversy is resolved.

A more specific question can be asked about the nature of the damping that is

affecting the behavior of our devices. What is the damping mechanism that leads to the

observation of the low current resistance R0, while the junction INV curve is still hysteretic?

We have provided a few simple phenomenological models which are consistent with our

observations, but much additional work is required before comprehensive understanding

and a truly quantitative agreement is reached.

At least three broad and separate areas come to mind in which further experimental

z work could be performed both to attempt to answer some of these questions, and to extend

our findings to other areas of current interest. First of all, challenging experimental goals

can be set regarding the measurement of the actual high frequency response of our small

junctions, and the observation of Bloch oscillations, by synchronizing the passage of
electros through the barrier with external microwave radiation. Such measurements midght

ZRO"'o"I



156

provide further confirmation of some of the models presented in this report, and give very

useful information on the damping mechanism which governs the behavior of our devices.

A second possible area of extension is the measurement of two dimensional arrays

of small Josephson junctions. A number of groupst have reported sriking observations

on in situ quench-condensed granular films of Sn and other superconducting materials.

Apparently, if the film normal resistance is larger than the quantum resistance (RQ w h14e 2

-6 W), the film is resistive at all temperatures, independent of the material and grain size

(and thus geometrical capacitance). Several theoretical modelst have been presented to

account for these observations, many of which model the films as an array of Josephson

devices. These results are reminiscent of ours, since the junctions we measured were

found to be resistive at all currents and temperatures, as long as their normal resistance was

larger than a few kW's (see Fig. 4.5). Of course, the models developed in this work relate

the behavior of our junctions to the value of their charging energy e2 /2C, and are thus

strongly dependent on the capacitance. Still, our findings might well be related to the

granular film measurements, perhaps by interchanging the effect of geometrical capacitance

with the effect of ideal low temperature frequency-dependent quasiparticle damping [which

contributes an effective capacitance given by (2.38)]. The measurement of 2-d arrays of

patterned superconducting junctions might be an effective way to test and extend these

ideas and provide information on p1' Ae transitions in a two dimensional system in the

presence of quantum fluctuations. The fabrication scheme developed in this work would

probably lend itself very well to the fabrication of relatively large (50 x 50) arrays of high

quality small tunnel junctions which would be well suited for such experiments.

t See, for example, Orr et al., [1986], Dynes, et al., (1978], Hebard and Pealanen, [19841.

0 See, for example, Chakravarty et al., [1986], Fisher [1986], Zwerger [1987], Ferrell (1988].

. ..... .......
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Fig. 7.1: The three terminal configuration of Fulton and Dolan. [After Fulton
and Dolan, 1987.] The capacitive electrode was implanted on the back of the
substrate.
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Fig. 7.2: A novel three terminal configuration: The capacitive electrode should
be placed as close as possible to the rest of device. The gate voltage, in this
case, would have to be provided by an ac source, such as a pulse generator.
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* The third area of extension regards the possible use of small tunnel junctions in a

three-terminal device. Fulton and Dolan [1987] have awakened considerable interest in a

clever sample configuration (shown schematically in Fig. 7.1) in which a very small

metallic strip is isolated from the environment by two small tunnel junctions. In their case,

the junctions are so small that the charging energy overwhelms the Josephson energy of the

device. T1he charge trapped on the strip is modulated by means of a capacitively coupled

electrode, the gate. The response of the device, measured across the two junctions, is

naturally very nonlinear, by virtue of the sharpness of the superconducting energy gap

structure. The dynamic resistance of the device can then be varied over a considerable

range by varying the voltage applied to the cap nitively coupled electrode. We believe that

*it would be interesting to study this type of de% ., in the regime where the Josephson and

charging energy are comparable. Could one induce a switch between the low voltage

branch to the high voltage branch of the I-V curve by applying a voltage to the capacitively

coupled electrode? It might also be interesting to consider the simple configuration shown

in Fig. 7.2. Only one junction is required in the configuration. Naturally, on long time

scales, the capacitance between the gate and the device is very large, since the second

junction is not present to isolate the device from :he leads. However, on very short time

scales, enough charge might build up on the gate side of the junction to affect the dynamnics

of the device, perhaps inducing a switch between branches of the I-V curve.

In conclusion,. we have experimentally investigated the competition between

charging, Josephson, and thermal energies in mesoscopic tunnel junctions. Furthermore,

we have presented a series of simple phenomenological models which provide satisfactory

semniquantitative explanations of some of the remarkable phenomena observed

experimentally, and may be a useful starting point for more ngorous theoretical treatments.

Our observations also raise a number of interesting unresolved questions which provide the

incentive for new experimental and theoretical work.
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APPENDIX ONE

THE ELECTRON-BEAM LITHOGRAPHY SYSTEM

The electron-beam system used in the exposure process described in Chapter 3,

consists of three complnents: an old JEOL 31 U scanning electron microscope, an IBM

Instruments system 9000 microcomputer, and a box of interface electronics. The pattern to

be exposed is loaded into the memory of the microcomputer, and a set of machine language

routinesl sends out two digital sixteen bit signals, representing the X and Y channels, to

the interfacing electronics. The interface box consists essentially of a power supply and

two separate sets of Analogic digital/analog converters. The computer enables the D/A

converters which interpret the two sixrteen bit signals, convert them to voltages and send

them to the X-Y driver of the electron microscope. A sketch of the interfacing electronics is

given in Figs. Al.1 and A1.2.

I Written by Dr. Horst Rogalla.
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APPENDIX TWO

A SCHEMATIC OF THE COMPUTER CONTROLLED

DATA ACQUISITION SYSTEM

A simple sketch of the acquisition system is shown in Fig. A2. 1. The system is

designed to measure the current at which a junction switches between the low and highI voltage branches of the I-V curve, which we define as the critical current Ic of the device.

As we explain in Chapter 2, in the presence of thermal activation or quantum tunnelirg, Ic

acquires a stochastic character. By repeating the measurement of Ic many times, data can

be accumulated on the switching distribution of the device, which can th,,n '.,e used to

obtain information on the dynamics of the junction.

While a computer controlled acquisition system is conven~ient for the analysis of the

data, digital computers tend to be quite noisy, and should be as far removed from the

experiment as possible. By using opto-isolators and PAR 113 diffementizI preamplifiers as

buffers, as slvjwn in Fig. A2. 1, the computer is isolated from tbe experiment, which is

also enclosed in a separate screened room.

To obtain a measurement of the critical current of the device, the compunr first

sends a low (0 V) trigger signal to the current source, which begins its --weep. the voltage

across the Josephson junction will be at first low, for I <I1c, and switch to a value larger

than I mV (for a Sn - Sn junction) at I = ci. At tL..s point the Schmitt trigger, which is

simply a level crossing detector with hysyteresis, sends a low signal (0 V) to the current

source, which holds its current at a constant value. The Schmitt trigger low signal his&

enables the computer to perform the measurement of the critical current. The cycle is then

be repeated, to obtain an accurate distribution of Ic values. The maximum Ic sampling rate

is about I kHz. A plot of the voltages vs. time in key parts of the system is snown in Fig.

A2.2. Fig. A2.3 and A2.4 are schematics of the current source and of one of the opto-

isolators.



-
161

Computer current
mesrment

issolators

thee data pouiiionsyte

L - -to-



in

current measurement

junction voltage

hold current

Fig. A2.2: Miming diagram for the data acquisition system.



stoarrt

.1+

Fi. 2.: irui

rat Ou1i0rmo0hecket ore
(fhne a+oiaplfesue

50kth
currnt sitchs wre 466 cips

resisaurs/+
lomeg

-.-

Fi.A .: ici



17(

V+

•; OND

Fig. A2.4: Circuit diagram for one of the opto-isolators. The 6N137
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